关于柯西不等式

柯西不等式

二维

  这玩意儿证明实际上非常简单,只需要引入一个大家都知道的式子:

∣ a ⃗ ⋅ b ⃗ ∣ ≤ ∣ a ⃗ ∣ ∣ b ⃗ ∣ | \vec{a} \cdot \vec{b} | \le |\vec{a}||\vec{b}| a b a ∣∣b

  其中 a ⃗ = ( a , b ) \vec{a} = (a, b) a =(a,b) b ⃗ = ( c , d ) \vec{b} = (c, d) b =(c,d),然后就可以写出来这个:

a c + b d ≤ a 2 + b 2 c 2 + d 2 ac + bd \le \sqrt{a^2 + b^2}\sqrt{c^2 + d^2} ac+bda2+b2 c2+d2

  再变一下形:

( a c + b d ) 2 ≤ ( a 2 + b 2 ) ( c 2 + d 2 ) (ac + bd)^2 \le (a^2 + b^2)(c^2 + d^2) (ac+bd)2(a2+b2)(c2+d2)

高维

  推广一下,把 a ⃗ \vec{a} a , b ⃗ \vec{b} b 写成 a ⃗ = ( a 1 , a 2 , a 3 , ⋯   , a n ) \vec{a} = (a_1, a_2, a_3, \cdots, a_n) a =(a1,a2,a3,,an) b ⃗ = ( b 1 , b 2 , b 3 , ⋯   , b n ) \vec{b} = (b_1, b_2, b_3, \cdots, b_n) b =(b1,b2,b3,,bn)

  然后继续带入上面那个式子就有:

∑ i = 1 n a i b i ≤ ∑ i = 1 n a i 2 ∑ i = 1 n b i 2 \sum_{i = 1}^n a_ib_i \le \sqrt{\sum_{i = 1}^n a_i^2}\sqrt{\sum_{i = 1}^n b_i^2 } i=1naibii=1nai2 i=1nbi2

  然后再平方一下:

( ∑ i = 1 n a i b i ) 2 ≤ ( ∑ i = 1 n a i 2 ) ⋅ ( ∑ i = 1 n b i 2 ) \left(\sum_{i = 1}^n a_ib_i\right)^2 \le \left( \sum_{i = 1}^n a_i^2 \right) \cdot \left( \sum_{i = 1}^n b_i^2 \right) (i=1naibi)2(i=1nai2)(i=1nbi2)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值