主定理(主方法)求解递归式

1、主方法使用条件

用主方法求解递归式有条件,必须要求递归式为以下形式:
T(n)=aT
其中a>=1,b>1,f(n)渐进趋正,意为对足够大的n,f(n)是正的,即n>= n 0 n_0 n0时,f(n)>0。
其中 n为问题规模, a为递推的子问题数量, n/b 为每个子问题的规模(假设每个子问题的规模基本一样), f(n)为递推以外进行的计算工作。

2、主方法具体使用

**核心是比较f(n)与n^(logba)的大小。**根据大小关系可以分为三种情况:
在这里插入图片描述

3、举例

Ex1:T(n)=4T(n/2)+n
这里f(n)=n, n ( l o g b a ) = n 2 n^(logba)=n^2 n(logba)=n2,f(n)小于n^(logba),所以为第一种情况,T(n)=θ( n 2 n^2 n2).
Ex2:T(n)=4T(n/2)+ n 2 n^2 n2
这里f(n)= n 2 n^2 n2, n ( l o g b a ) = n 2 n^(logba)=n^2 n(logba)=n2,f(n)等于n^(logba),所以为第二种情况,T(n)=θ( n 2 l g n n^2lgn n2lgn)
Ex3:T(n)=4T(n/2)+ n 3 n^3 n3
这里f(n)= n 3 n^3 n3, n ( l o g b a ) = n 2 n^(logba)=n^2 n(logba)=n2,f(n)大于n^(logba),所以为第三种情况,T(n)=θ( n 3 n^3 n3)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值