
百题千解计划(项目 实战 案例)
文章平均质量分 96
欢迎订阅!恭喜你发现宝藏专栏!目前在更:机试&面试&算法题目解析(含Python、Java、C、C++等多种编程语言实现),助你早日实现大厂工程师/架构师之梦!此外,包含Python&人工智能&深度学习&机器学习&知识图谱等超前沿科学知识深度解析,助力研究生科研生活,助你早发SCI,多发SCI。
优惠券已抵扣
余额抵扣
还需支付
¥79.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
追光者♂
人生如梦,醒悟皆空。(目前主要研究内容:图数据挖掘、智能交通系统)
展开
-
【追光者♂】深入理解 动态图表示学习 | 如何学动态图的Representation / Embedding ?| 详解动态图神经网络 | 如何理解动态图中的“事件”?| 5种动态图表示学习方法
Graph Representation Learning,图表示学习,可以总结为一个范式:有三个部分:一部分是 Input、一部分是 Prediction,还有中间的第三部分。Input这里,DG,就是我们说的 Dynamic Graph。 了解了 动态图的输入,下面就是 根据 我们的任务 去做Prediction。那么如何去做Prediction呢? 要经过一个中间过程,这个中间过程 就是去学一个,或者说是 的这样一个过程。也就是图里边的这个ZZZ。 那么最关键的地方是在哪里,很显然,原创 2025-01-27 10:32:34 · 240 阅读 · 2 评论 -
工具、技巧【个人专用】如何在CSND编辑器内输出带颜色的字体?Markdown编辑器——字体、字号、颜色使用全解
本篇,快速教你使用Markdown等主流编辑器进行字体的编辑和输出,附带多种好看常用的字体字号以及大家最常使用的颜色。工具、技巧【个人专用】如何在CSND编辑器内输出带颜色的字体?Markdown编辑器——字体、字号、颜色使用全解。原创 2023-08-07 21:13:43 · 1805 阅读 · 2 评论 -
教你写博客啦!【实用指南】在CSDN博客中插入emoji表情的方法(内含 详细图文教程 + 常用表情代码 + 表情资源网站汇总),极大提升博客阅读美感与档次!
我们在浏览博客不免会看到一些漂亮有趣的表情,比如这种颜文字符号形式的:“(=・ω・=)”、“( ̄3 ̄)”,但是这种表情包太少而且总觉得用着不怎么舒服;还有一些就好像我们在社交软件上所使用的一些搞怪表情:☄️ 💥 🔥 🌪 🌈 ☀️ 🌤 , 大家应该可以看出来,我平常在写博客时就时不时会使用类似这样的表情。相比于通篇都是文字,我相信大家应该都会喜欢既有意思,又能学到知识的博客!今天就分享一下常用的可以在博客中使用的emoji表情!原创 2023-07-22 18:17:51 · 585 阅读 · 25 评论 -
【问题解决】深度学习显存不够怎么办?——虚拟内存来帮忙numpy.core._exceptions._ArrayMemoryError: Unable to allocate 454. MiB for
注:当成功修改虚拟内存后,在跑深度学习项目时,实际的盘符,如此处我修改的H盘,内存将会占用20GB(即比之前的内存少20GB)。经过测试,修改完虚拟内存,即使不跑深度学习项目,该盘符的大小也还是会减少的哈~~这个错误提示意味着在运行深度学习项目时,由于内存限制,无法分配足够的内存来创建一个形状为(23974, 12, 207)且数据类型为float64的数组,需要454MB的内存空间。使用具有更高内存能力的机器:如果你有一台内存更大的机器,可以尝试在该机器上运行代码,以便能够容纳所需的大内存数组。原创 2025-04-21 10:36:12 · 89 阅读 · 0 评论 -
【工具&解决办法&技巧】如何判断git安装成功?| 保姆级教程:如何安装git |Git相关指令 |快速上手Git实际操作:项目克隆,版本库的修改与推送更新,git配置账户和角色 |如何退出vi编辑器
Git是一个分布式版本控制系统,广泛用于软件开发中。它可以追踪文件的修改历史,方便多人协同开发、版本管理和代码回退。Git以快速、强大和灵活著称,被许多项目和开发者广泛使用。Git使用了分布式的架构,每个开发者都拥有本地的完整代码仓库,可以独立地进行开发和修改。开发者可以从中央仓库克隆代码仓库到本地,然后进行开发工作并提交更改。在团队合作中,每个开发者都可以将他们的更改推送到中央仓库,使得其他人可以随时获取最新的代码。Git跟踪文件的修改历史通过使用一系列提交(commit)来实现。原创 2025-04-12 11:51:42 · 38 阅读 · 0 评论 -
【SUMO】内置的路网转换工具:netconvert | 通过建立Windows批处理文件,将osm文件转换为.net.xml文件 | 生成带有人行道的路网结构 | netedit 基础使用
关于 sumo,我们需要掌握 如何从osm地图 转换成net.xml格式的路网。在【SUMO】检验环境变量是否搭建成功 | sumo仿真第一步:路网的建立 | 初识netedit | 在osm等地图中导出路网 | 利用xml文件自定义路网这篇文章中,我已经初步讲解了转换的方法。这里,我们再来回顾一下。主要用到netconvert这个插件,它的原始位置,是在我们下载的sumo的bin目录内,如下图所示。我们可以把它理解为一个sumo内置的路网转换工具。原创 2025-03-31 09:42:44 · 104 阅读 · 2 评论 -
【SUMO】检验环境变量是否搭建成功 | sumo仿真第一步:路网的建立 | 初识netedit | 在osm等地图中导出路网 | 利用xml文件自定义路网
【SUMO】检验环境变量是否搭建成功 | sumo仿真第一步:路网的建立 | 初识netedit | 在osm等地图中导出路网 | 利用xml文件自定义路网...例如,我们已知一些道路的坐标等信息,可以利用这些数据 来进一步生成路网文件。类型文件。去定义边缘的类型、优先度、道路的数量、最高限速(单位 秒/米)<types></types>需要注意,上述节点文件、边缘文件、类型文件 需要在同一目录下。原创 2025-03-24 08:25:19 · 88 阅读 · 2 评论 -
时间序列建模 | 时间序列预测【项目复现】数据挖掘实战③:基于Matplotlib对空气质量监测数据进行可视化分析(附带实例代码)
时间序列建模 | 时间序列预测【项目复现】数据挖掘实战①:以北京空气质量分析预测为例(含详细实例代码与步骤)| SyntaxError: Non-UTF-8 code starting with‘\x时间序列建模 | 时间序列预测【项目复现】数据挖掘实战②:基于pandas实现空气质量监测分析,利用Python中的派生虚拟自变量进行数据统计,Python中的数据集抽样(附实例代码和步骤)本篇接下来,承接前两篇文章,在对空气质量监测数据进行基础的数据分析之后,我们继续来对该数据集进行可视化分析。原创 2025-03-17 07:32:40 · 61 阅读 · 0 评论 -
时间序列建模 | 时间序列预测【项目复现】数据挖掘实战②:基于pandas实现空气质量监测分析,利用Python中的派生虚拟自变量进行数据统计,Python中的数据集抽样(附实例代码和步骤)
在前一篇文章中,我们主要介绍了本例所用到的空气质量数据集,以及数据预处理的相关知识回顾(lambda表达式、apply()函数、map()函数、cut()函数),随后对数据集练习进行季度的划分、根据空气质量指数AQI进行简单分组。本篇,我们继续对空气质量检测数据进行基本分析。| 时间序列建模 | 时间序列预测【项目复现】数据挖掘实战②:基于pandas实现空气质量监测分析,利用Python中的派生虚拟自变量进行数据统计,Python中的数据集抽样(附实例代码和步骤)原创 2025-03-10 07:34:15 · 83 阅读 · 0 评论 -
时间序列建模 | 时间序列预测【项目复现】数据挖掘实战①:以北京空气质量分析预测为例(含详细实例代码与步骤)| SyntaxError: Non-UTF-8 code starting with‘\x
在这篇文章中,我们主要以北京市空气质量监测数据为研究对象,详细探讨了数据预处理和基本分析的过程。本篇包含数据集的介绍、特征解释,以及初步的数据预处理。通过使用Numpy和Pandas库,涵盖了数据读取、数据分组、数据重编码、分类汇总等数据加工处理功能的具体操作。同时,案例实现的过程中,重点解析了涉及Numpy和Pandas的关键函数的使用方法。原创 2025-03-03 10:18:17 · 86 阅读 · 0 评论 -
您已经安装了Adobe Acrobat,请在进行此安装之前卸载该产品 |Adobe Creative Cloud Cleaner Tool快速使用指南 | 电脑软件强制卸载神器 |Acrobat 安装
安装Acrobat时,遇到如下问题:(1)您已经安装了Adobe Acrobat,请在进行此安装之前卸载该产品。或者是(2)安装检测到您已安装了一个包含更多功能的产品。安装现在将终止。这两个问题,相比困扰了不少朋友 不短的时间!也许你尝试了一些卸载Acrobat的方法,可能显示卸载成功了,但是,在安装Acrobat时,依然会出现上述两个错误或者是类似的错误。本篇,将根据博主亲自才过的坑,给出解决方案。原创 2025-02-24 08:05:19 · 444 阅读 · 0 评论 -
【相关文章】动态图 & 元路径 | GraphMetaP:Metapath instance,bipartite graph,PG (Path-Graph)
(1) 首先 把每个用户与物品的交互数据 看做是 句子数据,对其语义和顺序信息进行建模,从而 构建用户-物品交互图(通过Word2Vec构建图)。(2) 然后,对元路径实例 进行采样,来捕捉用户-物品交互图中的异质性和结构性信息。(通过Random walk 随机游走 对Metapath 实例 进行采样)(3) 提出了一个递归 RNN,根据User和Item的历史交互,在同一潜在空间中迭代并相互学习 动态用户和物品嵌入。然后呢,通过一个移位嵌入模块(shift encoding)来预测未来的用户嵌入。原创 2025-02-17 08:41:48 · 95 阅读 · 0 评论 -
异构图---主流模型框架分析:Metapath2Vec,HAN,HGT,HetGNN | 深刻理解元路径 “Metapath” | 深刻理解异构图模型思想 | 异构图采样,特征编码,聚合邻居
Metapath2Vec,2017年提出。标题: 《metapath2vec: Scalable Representation Learning for Heterogeneous Networks》会议: KDD 2017摘要【不用念】我们研究的是异构网络中的表征学习问题。其独特的挑战来自于存在多种类型的节点和链接,这限制了传统网络嵌入技术的可行性。我们开发了两种可扩展的表征学习模型,即 metapath2vec 和 metapath2vec++。原创 2025-02-10 16:20:43 · 188 阅读 · 0 评论 -
【基础知识】图神经网络 | 异构图神经网络建模方法(模型) | 元路径,静态元路径,动态元路径(方法) | 主流异构图模型有哪些?
图神经网络(Graph Neural Network,GNN)是一种用于处理图数据的机器学习模型。与传统的神经网络模型不同,GNN能够有效地对图结构数据进行建模和学习。在图神经网络中,每个节点被赋予一个特征向量,表示该节点的属性。模型通过学习节点之间的关系和连接来进行信息传播和特征更新。这种信息传播过程通常通过迭代的方式进行,每个节点会根据其周围节点的特征进行更新,从而逐步融合更广泛的上下文信息。图神经网络在社交网络分析、推荐系统、分子结构分析等领域具有广泛的应用。原创 2025-01-22 17:30:33 · 152 阅读 · 0 评论 -
动态异构图表示学习(2)| 不同下游任务,使用不同的评估指标 | Baseline:7种经典/先进的图表示学习方法 | 任务:链接预测,节点分类,节点聚类
现实世界的网络由于其异质性和时间性,很难学习到高质量的表征。目前,大多数关于动态异构网络的方法都是基于元路径学习异构信息和基于网络快照学习演化信息,存在依赖元路径和无法模拟实时演化网络的局限性。原创 2025-01-20 08:00:00 · 134 阅读 · 0 评论 -
动态异构图表示学习(1):节点v的邻域特征聚合的详细过程 | 基于类型素数的节点签名 | 基于类型度的节点签名。思考:时序异构图网络表示学习,不依赖元路径,不使用网络快照,如何捕捉到细粒度的时间信息?
异质性意味着不同类型的节点具有不同的属性,不同类型节点对之间的交互行为保持着不同的语义。时间性揭示了节点随时间变化的交互趋势,网络中也可能存在有规律的演化模式。因此,对图的异构信息和时间信息进行充分建模,对于全面表示节点属性和合理预测未来链接具有重要意义。///原创 2025-01-13 08:59:42 · 94 阅读 · 0 评论 -
时空序列建模:如何融合时间模型和空间模型?——时空预测中的三种经典架构 | 图神经网络:动态图(Dynamic Graph,Dynamic GNN),如何将 动态图 转换成 等价静态图?
DCRNN采用融合的方式,在RNN的每个时间步计算中,都引入了图上的信息,也就是说,RNN在每个时刻的状态更新上,考虑的不再是原来自己序列的信息,而是空间中所有序列的信息,并以邻接矩阵作为指导。:拓扑结构,或者说属性(如节点属性、边属性等等) 随时间在变化,无论是节点属性 还是边属性 还是整个图的属性 或者其他属性,至少有一个随时间在变化,就称之为动态图。就如社交网络,张三的朋友是李四,几天后,张三新交了一个朋友王五,这时候图中就多了一条节点和边,图的拓扑结构发生变化了,这就是一个动态图。原创 2024-12-31 08:13:31 · 282 阅读 · 0 评论 -
【Graph Transformer:图神经网络与Transformer②】多头注意力机制 紧接的“前馈神经网络” | 输入编码及位置编码 | 带掩膜的多头注意力 | 推理过程和训练过程
【Graph Transformer:图神经网络与Transformer②】多头注意力机制 紧接的“前馈神经网络” | 输入编码及位置编码 | 带掩膜的多头注意力 | 推理过程和训练过程。关于Graph Transformer的讲解,上一篇已初步介绍,本篇重点介绍Transformer的剩余部分。原创 2024-12-09 10:31:03 · 89 阅读 · 0 评论 -
【Graph Transformer:图神经网络与Transformer①】GNN+Transformer(研究进展)| 开源图神经网络算法平台:OpenHGNN | 深入讲解Transformer
众所周知,网络或图是描述复杂系统的通用语言,因此就产生了网络表示学习。网络表示学习进一步挖掘,产生了图神经网络何为Transformer?它是 《Attention Is All You Need》这篇论文提出的一个模型。附,点击下载模型的结构如下图所示:该模型最大的特点是没有使用RNN以及CNN,而是全部使用了注意力机制。为什么要学习Transformer?(我们问一下ChatGPT)学习Transformer有以下几个重要原因:1.革命性的神经网络架构。原创 2024-12-03 19:36:35 · 366 阅读 · 1 评论 -
研究生系统化入门教程(六)【机器学习】回归与聚类算法:分类的评估方法(精确率与召回率,ROC曲线与AUC指标);模型保存与加载;无监督学习-K-means算法 (轮廓系数)
研究生系统化入门教程(六)【机器学习】回归与聚类算法:分类的评估方法(精确率与召回率,ROC曲线与AUC指标);模型保存与加载;无监督学习-K-means算法 (轮廓系数)。一家广告平台需要根据相似的人口学特征和购买习惯将美国人口分成不同的小组,以便广告客户可以通过有关联的广告接触到他们的目标客户。原创 2024-11-25 07:30:24 · 89 阅读 · 0 评论 -
【2024 Python 趣味项目】基于Python实现桌面“扫雷小游戏”(附实际效果和源代码)| 另附:CSDN批量查询文章质量分,直接可执行代码,可查询所有文章质量分
这篇文章是我在2023年11月写的,躺在草稿箱近一年了,发一下吧~!一个是基于Python实现的扫雷小游戏(含源代码和运行效果,可直接执行);一个是批量查询个人CSDN文章的所有质量分,速度还是挺快的。希望大家喜欢!原创 2024-11-04 15:33:02 · 133 阅读 · 0 评论 -
【嵌入式硬件开发基础】Arduino嵌入式综合应用系统:倒车雷达;门禁系统;遥控小车;智能家居系统;MP3播放器;万年历 |(系统总体设计、硬件设计、软件设计、含系统代码)
【嵌入式硬件开发基础】Arduino嵌入式综合应用系统:倒车雷达;门禁系统;遥控小车;智能家居系统;MP3播放器;万年历 |(系统总体设计、硬件设计、软件设计、含系统代码)原创 2024-10-28 06:30:16 · 124 阅读 · 0 评论 -
研究生系统化入门教程(四)【机器学习】分类算法:决策树(信息熵,信息增益);集成学习方法之随机森林:估计器的工作流程是什么?为何采用BootStrap抽样?
研究生系统化入门教程(四)【机器学习】分类算法:决策树(信息熵,信息增益);集成学习方法之随机森林:估计器的工作流程是什么?为何采用BootStrap抽样?原创 2024-10-07 07:04:09 · 175 阅读 · 0 评论 -
研究生系统化入门教程(三)【机器学习】分类算法:数据集该如何划分/相关API;sklearn转换器和估计器;K近邻算法;模型选择和调优;朴素贝叶斯算法(条件概率与联合概率)(含案例代码)
知道数据集的分为训练集和测试集知道sklearn的转换器和估计器流程了解sklearn的分类、回归数据集说明K-近邻算法的距离公式说明K-近邻算法的超参数K值以及取值问题说明K-近邻算法的优缺点应用KNeighborsClassifier实现分类了解分类算法的评估标准准确率说明朴素贝叶斯算法的原理说明朴素贝叶斯算法的优缺点应用MultinomialNB实现文本分类应用模型选择与调优说明决策树算法的原理说明决策树算法的优缺点。原创 2024-09-23 14:14:37 · 157 阅读 · 0 评论 -
研究生系统化入门教程(一)【机器学习】概述:机器学习与人工智能、深度学习,机器学习(算法分类)及开发流程;特征工程:字典特征提取,文本特征提取,图像特征提取(含实例代码及解析)
以算法、案例为驱动的学习,伴随浅显易懂的数学知识作为人工智能领域(数据挖掘/机器学习方向)的提升课程,掌握更深更有效的解决问题技能应用实现数据集的特征工程掌握机器学习常见算法原理应用Scikit-learn实现机器学习算法的应用,结合场景解决实际问题了解机器学习定义以及应用场景说明机器学习算法监督学习与无监督学习的区别说明监督学习中的分类、回归特点说明机器学习算法目标值的两种数据类型说明机器学习(数据挖掘)的开发流程。本篇可作为 机器学习入门教程,亦可作为机器学习的快速回顾/复习。从宏观的视角,介绍机器学习原创 2024-08-26 07:32:03 · 259 阅读 · 1 评论 -
【基于Arduino的嵌入式开发实例】基础实验(附带完整源码、效果展示):按键、蜂鸣器、温湿度传感器_dht11、液晶显示屏(输出基础字符、输出动态笑脸等表情//可结合温湿度传感器)
分享几个有趣的基础实验,均是基于嵌入式开发平台Arduino,实验分别是:按键实验、蜂鸣器实验、温湿度传感器_dht11实验、液晶显示屏(输出基础字符、输出笑脸)的实验,均包含经过调试的可执行完整源代码,同时包含部分实验效果。注意:实验代码是一部分,另外重要的是还需要将引脚线连接完整(不出错),才能达到最佳的实验效果。此外,多多调试,也是必不可少的。原创 2024-01-26 08:30:17 · 159 阅读 · 0 评论 -
【Arduino】编程语言:随机函数、位和字节函数、stream、常量、数据类型转换函数、数据类型(String、array、bool、boolean、byte、char等16种数据类型)
本篇我们继续学习Arduino编程语言的相关知识,主要讲述:随机函数(random、randomSeed)、位和字节函数(bit、bitClear、bitRead等)、常量相关知识(浮点常量、整数常量、HIGH和LOW)、数据类型(16种数据类型)转换函数(byte、char、float、int、long、word等)以及数据类型的相关知识。注意,这里我们只是初步了解即可,详细地使用还是要结合我分享的Arduino实例化编程相关知识哦!原创 2024-01-18 19:15:56 · 165 阅读 · 0 评论 -
Heterogeneous Network Embedding异构图嵌入(2)| HNE应用领域:节点分类、节点聚类、链接预测、推荐系统、知识图谱相关应用、可视化等 | 基准数据集,开放源代码与平台
接上一篇:Heterogeneous Network Embedding异构图嵌入(1)| 编码器-解码器框架组成部分 | 基于矩阵因式分解、随机游走、AE自动编码器、图神经网络、知识图谱嵌入的HNE模型特点HNE 的应用领域:节点分类:节点聚类:链接预测:推荐系统 (Recommender Systems,RS):知识图谱相关应用:可视化:其他应用:基准数据集:开放源代码和工具:开放平台和工具包:异构网络嵌入模型的性能评估:提高可解释性:处理失衡问题:超越本地结构邻近性:考虑动态性: 处理异质性:多原创 2024-01-13 19:35:45 · 286 阅读 · 1 评论 -
Heterogeneous Network Embedding异构图嵌入(1)| 编码器-解码器框架组成部分 | 基于矩阵因式分解、随机游走、AE自动编码器、图神经网络、知识图谱嵌入的HNE模型特点
现实世界中的复杂网络本质上是异构的;它们具有不同类型的节点、属性和关系。现有的 HNE 方法主要可分为六类:矩阵因式分解(MF)、随机漫步(RW)、自动编码器(AE)、图神经网络(GNN)、知识图嵌入(KGE)和混合(HB)方方。编码器旨在将异构网络 G 的特征 嵌入到低维向量空间,解码器旨在根据学习到的低维特征 表示重建原始异构网络的信息。其内在逻辑是,如果 模型能从编码嵌入中 重建原始网络的图结构和语义关系,那么学习到的嵌入 应该包含下游 ML 任务所需的所有信息。原创 2024-01-13 17:28:50 · 677 阅读 · 20 评论 -
【Arduino】编程语言:定时函数、数学函数、字符函数(功能、语法格式、参数说明、返回值) | 软件开发环境:安装步骤介绍(EXE安装版、ZIP安装版)
本篇首先来介绍Arduino软件开发环境的安装步骤(补充),包含EXE安装版和ZIP压缩包版,然后介绍Arduino开发环境的搭建及其主体步骤。随后较为详细地介绍了Arduino编程语言中的定时函数(delay()、micros()等)、数学函数(abs()、map()、pow()等)和字符函数(isAlpha()、isAscii()等)的用法(功能、语法格式、参数说明、返回值)。原创 2024-01-12 08:21:20 · 153 阅读 · 0 评论 -
【嵌入式开发·Arduino基础】循迹小车的相关准备工作:电源板的连接,Arduino高级编程 | 直流电机及其转速控制与测量,循迹小车相关电路与元器件,光电循迹模块电路及原理,小车障碍实验
TB6612FNG是东芝半导体公司生产的一款直流电机驱动器件,它具有大电流OSFET-H桥结构,双通道电路输出,可同时驱动2个电机。TB6612FNG每通道输出最高1 A的连续驱动电流,启动峰值电流达2A/3A(连续脉冲/单脉冲);4种电机控制模式:正转/反转/制动/停止;PWM支持频率高达100 kHz;待机状态;片内低压检测电路与热停机保护电路;工作温度:-20~85℃;SSOP24小型贴片封装。原创 2024-09-30 07:08:31 · 162 阅读 · 0 评论 -
【嵌入式硬件开发基础】Arduino常用通讯模块与应用:WiFi通讯模块,GSM/GPRS通讯模块,GPS定位模块,nRF24L01通讯模块
WiFi是一种可以将个人电脑、手持设备等终端以无线方式互相连接的技术。WiFi具有无线电波覆盖范围广,速度快、靠性高、无需布线、健康安全等特点。目前已广泛应用于网络媒体、掌上设备、日常休闲、客运列车等众多领域。WiFi通讯模块也广泛应用于监控、遥控玩具、网络收音机、摄像头、数码相框、医疗仪器、数据采集、手持设备、家居智能化、仪器仪表、设备参数监测、无线POS 机、现代农业、军事等方面。原创 2024-10-14 07:52:55 · 175 阅读 · 0 评论 -
【嵌入式硬件开发基础】Arduino常用通讯模块与应用:蓝牙通讯模块(蓝牙主模块和从模块的通讯、安卓手机和蓝牙从模块的通讯),ZigBee通讯模块 XBee(XBee模块的通讯模式、参数配置、帧格式
蓝牙是一种高效稳定的数据传输技术。蓝牙标准中定义了多种协议,使蓝牙协议可应用于各种数据传输。蓝牙端口协议(Serial Port Profile,SPP)是用于规范文本数据传输的协议,该协议可使蓝牙接口能被当成串口一样进行数据传输。蓝牙模块的作用就是以无线连接取代有线连接,主要应用在定位标签、资产跟踪、运动及健身传感器、医疗传感器、智能手表、遥控器、玩具等设备上,将固定和移动信息设备组成局域网络,实现设备之间低成本的无线互连通信。原创 2025-04-03 20:53:18 · 51 阅读 · 0 评论 -
【嵌入式硬件开发基础】Arduino板常用外设及应用:MPU6050空间运动传感器(简介,类库函数,卡尔曼滤波),继电器(原理介绍,含应用实例/代码)
MPU-6050为全球首例整合性6轴运动处理组件,是将三轴陀螺仪和三轴加速器合二为一的传感器。由于其体积小巧、功能强大、精度较高,且采用I2C接口,它不仅被广泛应用于工业领域,也常被用在航模上控制飞行器的姿态。Arduino集成了第三方的MPU6050传感器的函数库。MPU6050的数据是有较大噪音的,如果不滤波将会严重影响整个控制系统的精准度。MPU6050芯片内自带了一个数据处理子模块DMP,已经内置了滤波算法,在许多应用中,使用DMP输出的数据已经能够很好地满足要求。原创 2024-09-16 07:10:06 · 206 阅读 · 0 评论 -
【嵌入式硬件开发基础】Arduino板常用外设及应用:红外光电开关传感器,红外人体传感器,温度传感器DS18B20、心率传感器(含实例代码)
红外光电开关传感器由红外线发射管和红外线接收管组成。E18-D80NK 红外光电开关也称为漫反射式避障传感器或接近开关,是一种集发射与接收于一体的光电传感器。检测距离可以根据要求进行调节。该传感器具有探测距离远(调节好电位器之后的最大距离为80cm)、受可见光干扰小特点,可广泛应用于机器人避障、接近检测、流水线计件、多功能提醒器、人流量统计等场合。红外光电开关的正常状态是高电平输出,检测到物体时输出低电平。输出通过一个1kΩ的上拉电阻即可和单片机的I/O数字口连接。原创 2024-09-02 14:18:27 · 302 阅读 · 0 评论 -
【嵌入式硬件开发基础】Arduino板常用外设及应用:日历时钟模块(PCF8563),三色LED灯,灰尘传感器,颜色传感器,水位传感器,气体传感器,火焰传感器(简介、原理、应用实例)
PCF8563是PHILIPS公司推出的一款工业级的多功能时钟/日历芯片,其内含I2C总线接口功能且具有极低功耗。PCF8563的多种报警功能、定时器功能、时钟输出功能以及中断输出功能能完成各种复杂的定时服务,甚至可为单片机提供看门狗功能、内部时钟电路、内部振荡电路和内部低电压检测电路等。三色LED(RGB LED,也称为全彩LED)和普通单色LED的不同之处在于,通过控制其红、绿、蓝三种颜色的组合,可以发出其他颜色的光。原创 2024-08-13 11:26:37 · 223 阅读 · 0 评论 -
【嵌入式开发基础】Arduino常用外设及应用:舵机,SD卡读写模块、RFID读卡模块(简介,工作原理,类库函数,应用实例)
舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。例如舵机是船舶上的一种大甲板机械,选型时主要考虑扭矩大小,导弹姿态变换的俯仰、偏航、滚转运动等都是靠舵机相互配合完成的。舵机在船舶、高档遥控玩具、智能车和机器人控制等方面有很多应用。SD卡在日常生活与工作中使用广泛,目前已经成为最为通用的数据存储卡。SD卡具有价格低廉、存储容量大、使用方便、通用性与安全性强等优点,将SD卡应用到嵌入式应用系统,将使系统变得更加出色。SD卡支持两种总线方式:SD方式与SPI方式。原创 2024-08-05 09:34:09 · 223 阅读 · 0 评论 -
【嵌入式开发基础】Arduino常用外设及应用:超声测距(SR04)、蜂鸣器、温湿度传感器(DHT11)、直流电机、步进电机(工作原理,应用实例、类库函数)
直流电机是将直流电能转换成机械能的机器。定子:直流电机运行时静止不动的部分。定子的主要作用是产生磁场。转子:运行时转动的部分,其主要作用是产生电磁转矩和感应电动势,应用:智能小车的驱动器件。步进电机是一种将电脉冲转化为角位移的执行机构。当步进电机驱动器接收到一个脉冲信号时,它就驱动步进电机按设定的方向转动一个固定的角度(即步距角)。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的,同时也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。原创 2024-07-25 13:58:29 · 188 阅读 · 0 评论 -
【嵌入式开发基础】Arduino与语音模块接口技术:语音识别模块及其类库函数,语音合成模块及其类库函数(含实例)
【嵌入式开发基础】Arduino与语音模块接口技术:语音识别模块及其类库函数,语音合成模块及其类库函数(含实例)原创 2024-07-01 08:31:37 · 375 阅读 · 2 评论 -
【嵌入式开发基础】Arduino与数码管显示器的接口技术 | Arduino与LED点阵模块的接口技术 | LCD液晶显示器 | Arduino与LCD显示器的接口技术 | LCD串行控制接口技术
液晶显示有字符型模块和点阵图形模块,是一种专门用于显示字母、数字、符号等点阵式LCD,目前常用16×1,16×2,32×1和32×2行等和的模块。(1)可编程选择显示三种带游标的字型:一行5×8点、二行5×8点和一行5×10点。(2)内含字型库CGROM,产生192个点阵字型,包括96个标准ASCII码、96个日文字符和希腊字符。(3)内含128个字节的RAM,其中80个字节为显示DDRAM,可以存储80个字符显示码。(4)内含64个字节的自定义字型CGRAM,可暂存自建矩阵字型。原创 2024-05-31 06:30:00 · 260 阅读 · 0 评论