为什么要进行SQL优化?建议收藏

本文深入探讨了SQL优化的重要性,包括查询性能低、执行时间过长等问题的原因,并详细讲解了SQL执行过程及优化目标。特别关注数据库索引的原理与应用,如何通过合理使用索引减少I/O操作,提升查询效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
为什么SQL需要优化?

  1. 查询性能低
  2. 执行时间过长
  3. 等待时间过长
  4. SQL写的太差(尤其体现在多表查询上)
  5. 索引失效
  6. 服务器参数(缓存,线程数)设置不合理
  7. 项目需求不合理
  8. …等等

我们程序员写代码时能做的只有对写SQL尽可能的做出优化,执行效率更高,有效的使用索引,重点放在写SQL上

SQL的执行过程

MySQL在接收到客户端传入的SQL语句后并不能马上对该SQL进行执行,是需要经过一系列复杂的流程,最终转变成二进制的机器码,才能被执行的,我们需要对执行的SQL进行优化,那么就有必须先来了解下,一个SQL语句的执行有哪些主要环节,以查询的SQL来举例

查询语句的执行过程:
在这里插入图片描述

  • 通过网络的通讯协议接收客户端传入的SQL

  • 查看该SQL对应的结果在查询缓存中是否存在

    • 存在则直接返回结果

    • 不存在则继续往下走

  • 由解析器来解析当前SQL,最终形成初步的解析树

  • 再由预处理器对解析树进行调整,完成占位符赋值等操作

  • 查询优化器对最终的解析树进行优化,包括调整SQL顺序等

  • 根据优化后的结果得出查询语句的执行计划,就是查询数据的具体实施方案,交给查询的执行引擎

  • 查询执行引擎调用存储引擎提供的API,最后由存储引擎来完成数据的查询,然后返回结果

SQL的执行顺序

写SQL时的顺序

select … from … join … on … where … group by … having … order by … limit …

解析SQL时的顺序

from … on … join … where … group by … having … select … order by … limit …

详情参看文档: https://www.cnblogs.com/annsshadow/p/5037667.html

SQL优化的目标

对于SQL优化来讲重中之重就是优化索引的使用

数据库索引

什么是索引?

索引是一种帮助数据库获得高效查询效率的数据库对象,该数据库对象使用了特殊的数据结构,以B树和Hash树最为常见,MySQL中索引默认使用的是B树

通俗来讲可以这样理解,索引好比是字典的目录,我们在查询某个字时,可以先从目录中查找,看看我们需要的找字在字典中具体页码是多少,然后再直接翻到对应的页码,从而快速的找我们需要的内容,如果没有这个目录,我们就只能从字典的第一页开始,一页一页的往下翻,直到找到我们需要的内容,从这里我们不难看出目录对查询数据的所提高的性能之大,作用非常关键,同样索引也是一样的

用户表(user)数据:

idnameage
10赵铁柱18
20唐马儒25
30张全蛋20
40王尼玛16
50王大锤30
60易小星30

我们对age列建立B树(一般指B+树)索引,遵循树数据结构的特点,对比当前节点,小的放左边,大的放右边:

在这里插入图片描述

查询age小于等于18的数据:

select * from user where age <= 18 
  • 没有索引的时候

    使用的全表检索的方式,直接访问文件中的数据,对该列的每一个值进行访问,此时访问文件中数据使用了大量的IO操作,而IO操作是要耗费大量性能

  • 有索引的时候

    索引文件已经使用数据结构对数据进行了排序和合并,当我们需要查询age小于等于18的数据时,只要通过二分查找的方式,从索引中找18和18节点上挂载的左边节点全都获取出来,再根据ID获取到对应的数据,这种方式能有效的减少IO操作

使用了索引后我们能感受到最直接的好处就是,通过减少IO操作的次数,从而提升查询的性能

拓展:在BTree数据结构中,数据全都存放在叶子节点上,无论查找什么数据都只跟树的层数有关,一个3层结构的BTree能容纳上百万的数据,在上百万的数据中查询某个数据就只需要找3次,效率极高
在这里插入图片描述

索引的利

  • 减少IO操作次数,提供查询效率
  • 降低CUP使用率(在排序操作中尤为明显)

索引的弊

  • 占据大量的硬盘存储空间
  • 不适用索引的情况
    • 数据量小的表
    • 频繁变动的字段
    • 不经常查询的字段
    • 降低DML操作的效率

索引分类

一个表是可以有多个不同的索引,

  • 主键索引

    只在建立主键约束时自动添加,特点:非空且唯一

  • 单列索引

    单独对表中的某个列数据建立索引

  • 唯一索引

    在该索引中没有重复的数据,都是唯一的

  • 复合索引

    多个列的值组成的索引,当第一个列的值重复时,按照后面的组合必须查找数据

    复合索引相当于字典的二级目录,当前一个值一致时,再使用后一个值做筛选

项目中使用最多的是复合索引,在实际的需求中我们往往都是按照多个条件做查询,而MySQL在做查询时只能选择1个索引来使用,因此复合索引比较有优势,但是复合索引的使用限制比较多,后面在实际操作的时候再说

当使用 `IN` 关键字时,如果后面跟的是一个过长的列表,会导致查询的性能下降。以下是一些优化策略: 1. 使用 `EXISTS` 替代 `IN` 关键字,因为 `EXISTS` 只需要匹配到一条记录即可返回结果,而 `IN` 则需要匹配整个列表。例如: ```sql SELECT * FROM table1 WHERE id IN (SELECT id FROM table2); ``` 可以改写为: ```sql SELECT * FROM table1 WHERE EXISTS (SELECT 1 FROM table2 WHERE table1.id = table2.id); ``` 2. 将列表转换为临时表,使用 `JOIN` 关键字来优化查询。例如: ```sql SELECT * FROM table1 WHERE id IN (1, 2, 3, ..., 52); ``` 可以改写为: ```sql CREATE TEMPORARY TABLE temp_table ( id INT ); INSERT INTO temp_table (id) VALUES (1), (2), (3), ..., (52); SELECT * FROM table1 JOIN temp_table ON table1.id = temp_table.id; ``` 3. 使用索引来加速查询。如果 `IN` 列表中的值经常重复出现,可以考虑在该列上创建索引,以加快查询速度。 4. 将 `IN` 列表中的值按照顺序排列,以便在查询时利用索引的有序性能够更快地定位到匹配的值。 5. 将 `IN` 列表中的值拆分成多个子列表,每个子列表不超过 50 个值,然后使用 `OR` 连接这些子列表。例如: ```sql SELECT * FROM table1 WHERE id IN (1, 2, ..., 80); ``` 可以改写为: ```sql SELECT * FROM table1 WHERE id IN (1, 2, ..., 50) OR id IN (51, 52, ..., 80); ``` 以上是一些常见的优化策略,具体优化方式需要根据具体情况进行选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值