先枚枚举每一行的棋子分布情况,再对各种情况进行判断,这样可以减少枚举次数。
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <queue>
#include <iostream>
#include <vector>
using namespace std;
typedef long long sint;
int n,m;
sint f[10][(1<<10)][100];
bool flag[1<<10][1<<10];
int use[1<<10];
vector<int>g[1<<10];
int dx[]={0,0,1,1,1,-1,-1,-1};
int dy[]={1,-1,1,0,-1,1,0,-1};
int tab[10][10];
bool judge(int x,int y)
{
if(tab[x][y]==0) return true;
int xx,yy;
for(int i=0;i<8;i++)
{
xx=x+dx[i];
yy=y+dy[i];
if(tab[xx][yy]==1)
{
return false;
}
}
return true;
}
bool check(int situ1,int situ2)
{
for(int i=0;i<n;i++)
{
tab[1][i+1]=(situ1>>i)&1;
//printf("%d ",tab[1][i+1]);
}
// printf("\n");
for(int i=0;i<n;i++)
{
tab[2][i+1]=(situ2>>i)&1;
//printf("%d ",tab[2][i+1]);
}
//printf("\n\n");
for(int j=1;j<=2;j++)
{
for(int i=1;i<=n;i++)
{
if(!judge(j,i))
{
return false;
}
}
}
return true;
}
void getf(int pos)
{
for(int i=0;i<(1<<n);i++)
{
for(int j=0;j<g[i].size();j++)
{
for(int k=0;k<=m;k++)
{
f[ pos ][ g[i][j] ][ k+use[g[i][j]] ]+=f[pos-1][i][k];
}
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=0;i<(1<<n);i++)
{
for(int j=0;j<n;j++)
{
use[i]+=(i>>j)&1;
}
//printf("%d\n",use[i]);
}
for(int i=0;i<(1<<n);i++)
{
for(int j=0;j<(1<<n);j++)
{
if(check(i,j))
{
g[i].push_back(j);
}
}
}
for(int i=0;i<g[0].size();i++)
{
f[1][g[0][i]][use[g[0][i]]]=1;
}
for(int i=2;i<=n;i++)
{
getf(i);
}
sint ans=0;
for(int i=0;i<(1<<n);i++)
{
ans+=f[n][i][m];
}
printf("%lld\n",ans);
return 0;
}