bzoj1087: [SCOI2005]互不侵犯King 压状dp

5 篇文章 0 订阅
先枚枚举每一行的棋子分布情况,再对各种情况进行判断,这样可以减少枚举次数。
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <queue>
#include <iostream>
#include <vector>
using namespace std;
typedef long long sint;
int n,m;
sint f[10][(1<<10)][100];
bool flag[1<<10][1<<10];
int use[1<<10];
vector<int>g[1<<10];
int dx[]={0,0,1,1,1,-1,-1,-1};
int dy[]={1,-1,1,0,-1,1,0,-1};
int tab[10][10];
bool judge(int x,int y)
{
    if(tab[x][y]==0) return true;
    int xx,yy;
    for(int i=0;i<8;i++)
    {
        xx=x+dx[i];
        yy=y+dy[i];
        if(tab[xx][yy]==1)
        {
            return false;
        }
    }
    return true;
}
bool check(int situ1,int situ2)
{
    for(int i=0;i<n;i++)
    {
        tab[1][i+1]=(situ1>>i)&1;
        //printf("%d ",tab[1][i+1]);
    }
   // printf("\n");
    for(int i=0;i<n;i++)
    {
        tab[2][i+1]=(situ2>>i)&1;
        //printf("%d ",tab[2][i+1]);
    }
    //printf("\n\n");
    for(int j=1;j<=2;j++)
    {
        for(int i=1;i<=n;i++)
        {
            if(!judge(j,i))
            {
                return false;
            }
        }
    }
    return true;
}
void getf(int pos)
{
    for(int i=0;i<(1<<n);i++)
    {
        for(int j=0;j<g[i].size();j++)
        {
            for(int k=0;k<=m;k++)
            {
                f[ pos ][ g[i][j] ][ k+use[g[i][j]] ]+=f[pos-1][i][k];
            }
        }
    }
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=0;i<(1<<n);i++)
    {
        for(int j=0;j<n;j++)
        {
            use[i]+=(i>>j)&1;

        }
        //printf("%d\n",use[i]);
    }
    for(int i=0;i<(1<<n);i++)
    {
        for(int j=0;j<(1<<n);j++)
        {
            if(check(i,j))
            {
                g[i].push_back(j);
            }
        }
    }
    for(int i=0;i<g[0].size();i++)
    {
        f[1][g[0][i]][use[g[0][i]]]=1;
    }
    for(int i=2;i<=n;i++)
    {
        getf(i);
    }
    sint ans=0;
    for(int i=0;i<(1<<n);i++)
    {
        ans+=f[n][i][m];
    }
    printf("%lld\n",ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值