bzoj1061: [Noi2008]志愿者招募 费用流

首先贴个线性规划原问题模型:
max c1x1+c2x2+...cnxn
约束条件
ai1x1+ai2x2+...ainxn>=bi
ai1x1+ai2x2+...ainxn=bi
ai1x1+ai2x2+...ainxn<=bi
ai1x1+ai2x2+...ainxn 无限制
变量
xi>=0 /xi<=0/xi=0/xi无限制
 
网络流对应到线性规划,笼统的讲,就是每条边的流量(而非容量)看做每个变量xi,每个等式即为每个点的流量平衡条件. 即sigma(F[u,i])=sigma(F[i,v]).  直观的对应可看做 出边流量-入边流量=0 即sigma(F[i,v])-sigma(F[u,i])=0
得到结论: 这样对于每条边(u,v)若为Xi,Xi会在u的流量平衡条件式子(约束)中以正的形式出现一次,在v的流量平衡条件式子中以负的形式出现一次. 
然后构图的话,具体是这样,把每个等式看做一个点,对于一个变量Xi,若它在等式u中以正的形式出现(即它为u的一条出边),在等式v中以负的形式出现(即它为v的一条入边),则显然它恰是边(u,v) . 最终Xi的解,即为(u,v)的流量.
但是会发现,上面的结论并不完全正确!如果构建的是有源汇的网络,显然由于源汇无这样的流量平衡条件,即不存在以上的式子,所以有关源汇的边,也就是形如源->u,v->汇的边,只会出现一次.
怎么办?可以把有关源汇的边先拿出来,那么显然就变成每个式子为 sigma(F[i,v])-sigma(F[u,i])=bi
如果bi>0 即出边流量=入边容量+bi  ,说明原来是源点到该点有一条bi的边,才使之流量平衡的.
如果bi<0 即出边容量+|bi|=入边容量,说明 原来是该点到汇点有一条|bi|=-bi的边,才使流量平衡的.
PS 之所以源汇要必要分开讨论,是因为所建容量需为正.
这里bi可为变量,也可为常量.  如果是变量应易知它的正负,如果为常量,显然只有最大流满流才是可行解.
 
所以,类似上述的大多等式都可用网络流来解. 当然也有可能是作差后通过BLAH转化而来的等式.
然后,除个别外每个变量以正的负的形式都恰出现一次,经常是网络流的流量平衡条件,可用网络流来做.

(不等式有时可加个变量从而变成等式,但要注意加的变量也要满足"正负"条件,这题是因为相邻作差恰满足所以才可以的,详见BYVOID这题题解)

#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define MAXN 310000
#define MAXM 310000
#define INF 0x3f3f3f3f
struct node
{
    int u,v,f,c,next;
}e[MAXM],tree[MAXM];
int k,head[MAXN],pre[MAXN],dist[MAXN],vis[MAXN],cost[MAXN];
int en,s,t,maxflow,mincost,m,n,num;
int save[100][100],need[1000];
void add(int u,int v,int f,int c)
{
    e[en].u=u;
    e[en].v=v;
    e[en].c=c;
    e[en].f=f;
    e[en].next=head[u];
 
    head[u]=en++;
    e[en].u=v;
    e[en].v=u;
    e[en].c=-c;
    e[en].f=0;
    e[en].next=head[v];
    head[v]=en++;
}
int spfa()
{
    int i,u,v;
    for(i=0;i<=t;i++)
        pre[i]=-1,vis[i]=0,dist[i]=INF;
    dist[s]=0;
    vis[s]=1;
    queue<int>q;
    q.push(s);
    while(!q.empty())
    {
        u=q.front();
        q.pop();
        for(i=head[u];i!=-1;i=e[i].next)
        {
            v=e[i].v;
            if(e[i].f>0&&dist[u]+e[i].c<dist[v])
            {
                dist[v]=dist[u]+e[i].c;
                pre[v]=i;
                if(!vis[v])
                {
                    vis[v]=1;
                    q.push(v);
                }
            }
        }
        vis[u]=0;
    }
    if(dist[t]==INF)
        return 0;
    return 1;
}
void add2()
{
    int v;
    int maxf=INF;
    for(v=pre[t];~v;v=pre[e[v].u])
        maxf=min(maxf,e[v].f);
    for(v=pre[t];~v;v=pre[e[v].u])
    {
        e[v].f-=maxf;
        e[v^1].f+=maxf;
 
    }
    maxflow+=maxf;
    mincost+=maxf*dist[t];
}
void init()
{
    maxflow=0;
    s=0;
    t=10001;
    memset(head,-1,sizeof(head));
}
int main()
{
    int l=0,r,a,b,c,d;
    scanf("%d%d",&n,&m);
    init();
    for(int i=1;i<=n;i++)
    {  
    scanf("%d",&r);
    int x=r-l;  
        if(x>0) add(s,i,x,0);        
    else add(i,t,-x,0);         
    add(i+1,i,INF,0);         
    l=r;
    }
    add(n+1,t,l,0);
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d%d",&l,&r,&c);
        add(l,r+1,INF,c);
    }
    while(spfa())
        add2();
    printf("%d\n",mincost);
    return 0;
}
/*
3 10 2 3 3 2
5
6
7
*/


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值