[ruoyi]用户权限管理

文章介绍了RuoYi框架中用户权限的多种类型,如部门权限、岗位权限、自定义权限和菜单权限,以及如何通过后端代码实现全权限、部门权限下的数据筛选和个人权限的查询。管理员可通过图形界面轻松配置权限,确保数据安全和用户职责划分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是用户权限

  RuoYi框架中的用户数据权限通常包括以下几个方面:

  1. 部门数据权限: 系统管理员可以配置用户只能访问特定部门的数据。这确保了用户只能查看、编辑或删除其所在部门的相关信息。
  2. 岗位数据权限: 类似于部门权限,系统管理员可以配置用户只能访问特定岗位的数据。这对于具有不同职责的用户来说很有用。
  3. 自定义数据权限: RuoYi还提供了自定义的数据权限配置,系统管理员可以根据实际业务需要配置用户对特定数据的访问权限。
  4. 菜单权限: 除了数据权限,RuoYi还支持菜单权限的配置。系统管理员可以为用户分配菜单权限,限制用户在前端系统中能够看到和操作的菜单项。
      这些数据权限的配置通常是在系统的管理界面中进行的,管理员可以通过图形界面配置用户的数据权限,而不需要直接修改数据库或代码。

不同权限类型 结合 后端代码

全部类型

在这里插入图片描述
如果是拥有全部权限,则不对sql语句做修改

部门权限

在这里插入图片描述
deptAlias 是部门表的别名,user.getDeptId()是用户的id,在部门表中获取到对应dept_id的数据。

自定义权限

在这里插入图片描述
deptAlias 是部门表的别名,通过 StringUtils.append() 方法进行拼接。意义是,只有当某行数据的 dept_id 存在于角色关联的部门ID集合中时,该数据行才符合自定义权限规则。

本部门及以下权限

在这里插入图片描述
筛选出部门ID等于当前用户所属部门ID(user.getDeptId()),部门ID在当前用户所属部门的后代部门ID集合中(通过 find_in_set() 函数实现)

个人权限

在这里插入图片描述
仅查询本人信息,如果信息存在则拉取相关信息,否则返回没查到

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值