不用编程,快速实现西门子PLC与罗克韦尔(AB)PLC之间以太网通讯

        智能网关IGT-DSER支持多点对多点的PLC之间通讯,支持以太网,串口设备混合数据交换;无需编程开发,只须配置数据的起始地址和数量即可,支持热插拔,断电重启后自恢复运行,支持网络跨网段,在实际的工程项目中应用方便。本文是罗克韦尔(AB)的Micro850的PLC与西门子S7-200Smart之间的通讯的案例。

        在AB的Micro850的PLC内建立‘TAG_INT’、‘TAG_DINT’、‘TAG_REAL’3个全家变量,准备将其数值分别写入到Smart的PLC的VW1000、VD1002、VD1006寄存器,数据类型分别为16位有符号整数、32位有符号整数、32位浮点数;再建立‘ARR_DINT’、‘ARR_REAL’两个数组,分别用于接收来自Smart的VD800~VD836、VD900~VD936的数据。

        通过IGT-DSER的参数配置软件(下载地址)通过网线连接上网关模块后设置参数,网关的详细配置如下图:

         参数设置完成后将参数下载到网关模块,然后重启。重启完成后在通过参数设置软件连接上IGT-DSER网关模块读取参数,如果有错误会在软件的消息栏显示出来,同时错误的数据行底色为红色,须要根据状态消息提示修改参数后再次下载重启。

        参数软件带有网络检查和数据监控功能,在‘工具’菜单里面,分别为‘查找设备/PING’、‘网关数据监控’,方便调试实现数据交互。

        同时也可以通过PLC的编程软件监控PLC的数据,确认数据传输的正确性,以下是罗克韦尔Micro850的数据监控截图:

         下图是西门子S7-200Smart的数据监控截图:

         可以看到Micro850的3个标签的数据已经正常写入到Smart的V区域了,在Smart内设置的数据一同样写入到Micro850的数组了。

         三菱、西门子、欧姆龙等PLC都可以这种方式与支持Modbus协议的机器人、仪表等设备快速实现数据交互(其它品牌的PLC之间通讯案例)。网关常用的PLC类型如下:

◆ FX:   三菱FX/A系列系列PLC                                  ◆ ABM:  罗克韦尔/AB Micro系列PLC
◆ QLR:  三菱Q/L/R系列PLC(支持标签方式)              ◆ ABC:  罗克韦尔/AB Compact/Control系列
◆ OM:   欧姆龙全系列PLC(支持标签方式)                 ◆ DVP:  台达、信捷全系列PLC
◆ S72S: 西门子S7-200/Smart系列PLC                     ◆ FTK:  永宏/丰炜全系列PLC
◆ S734: 西门子S7-300/400系列PLC                          ◆ NAIS: 松下全系列PLC
◆ S71K: 西门子S7-1200/1500系列PLC                      ◆ KVS:  基恩士全系列PLC
◆ INO:  汇川全系列PLC                                              ◆ LS:      LG/LS全系列PLC
◆ MBS:  兼容Modbus协议的PLC、智能仪表              ◆ TPC:  丰田工机PC2/PC3系列
◆ FNC:  发那科数控/机器人的PMC系统                      ◆ GE:   GE PAC/PLC系统
◆ OPC:  OPC UA、OPC DA协议的客户端                 ◆ BKF:  倍福PLC CX系列控制器

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值