鲸鱼算法优化变分模态分解(VMD)包络熵和参数的特征提取及MATLAB代码实现

该博客介绍了利用鲸鱼优化算法(WOA)来优化变分模态分解(VMD)的参数,旨在提高滚动轴承故障诊断中信号特征提取的精度。通过VMD分解和包络熵计算,确定最佳模态个数K和惩罚参数α,进而提升信号分解效果。优化过程和特征提取流程详细阐述,并展示了优化前后的时域图对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1 简介

2 变分模态分解VMD原理

3 鲸鱼优化算法优化VMD原理

3.1. 鲸鱼优化算法优化VMD原理及流程 

3.2. 特征提取流程

4 优化效果

4.1. VMD各分量信号时域图

4.2. 鲸鱼优化算法优化VMD各分量信号时域图

4.3 全部图像

5. 主要代码

main.m


1 简介

针对从滚动轴承振动信号中所提取的故障信息精度低的问题,利用鲸鱼优化算法对变分模态分解模态个数K和惩罚参数α 寻优,然后根据VMD处理信号得到若干模态分量,筛选后进一步提取能量熵作为特征向量。使用特征提取向量,可进行后续轴承故障诊断等工作。

2 变分模态分解VMD原理

VMD能够自适应匹配每种模态的最佳中心频率和有限带宽,实现固有模态分量(IMF)有效分离,
其核心思想是构建和求解变分问题。

VMD实现步骤为:

由VMD分解步骤可知,分解信号前需要设置合适的模态个数K和惩罚参数α,K取值过大会导致过分解,反之,则会欠分解,α 取值过大,会造成频带信息丢失,反之,会信息冗余,所以需要确定最佳参数组合[K,α]。目前多用中心频率观察法,通过观察不同K值下的中心频率确定K值,但该法具有偶然性,且只能确定模态个数K,无法确定惩罚参数α。

3 鲸鱼优化算法优化VMD原理

3.1. 鲸鱼优化算法优化VMD原理及流程 

使用鲸鱼优化算法(WOA)对VMD参数进行寻优,以包络熵极小值作为适应度函数,包络熵代表原始信号的稀疏特性,当IMF中噪声较多,特征信息较少时,则包络熵值较大,反之,则包络熵值较小。

信号x (i )(i = 1,2,…,N )包络熵EP 用以下公式计算,式中a (i ) 是由VMD 分解的k 个模态分量经Hilbert 解调后的包络信号,ε (i )是通过

<think>嗯,用户需要查找关于VMD变分模态分解)中包络的图表或可视化方法。首先,我需要回顾一下VMD的基本概念,以及包络的定义作用。VMD是一种信号分解方法,用于将复杂信号分解为多个模态函数,而包络通常用来衡量信号的稀疏性或规律性,这在故障诊断等领域有应用。 用户提到的参考内容里,引用[2]讨论了VMD参数优化时适应度函数的选择,包括包络、样本等。这说明包络作为适应度函数的重要性,可能需要通过可视化来评估不同参数包络的变化,从而选择最佳参数。所以用户可能是在进行VMD参数优化,需要图表来展示不同参数对应的包络值,或者分解后的模态信号的包络分布。 接下来,我需要思考常见的可视化方法。例如,包络随分解模态数K惩罚因子α变化的二维热力图,这样可以直观显示参数包络的影响。另外,分解后的各模态信号的时域图包络谱图,可能结合包络值进行标注,帮助用户比较不同模态的稀疏性。还有不同参数组合下的适应度曲线图,比如在优化算法迭代过程中包络的变化趋势,这可能涉及遗传算法、粒子群优化等。 还需要考虑具体的实现步骤,比如如何计算每个模态的包络,如何生成包络谱,可能需要使用希尔伯特变换得到包络信号,再计算值。在Python或MATLAB中,这些步骤可以通过相应的信号处理库来实现,比如SciPy的Hilbert变换函数,或者MATLAB的信号处理工具箱。 用户可能还希望了解如何呈现这些图表,比如使用折线图、热力图、三维曲面图等,以及如何标注关键点,如最小包络对应的参数组合。此外,是否需要对比不同适应度函数(如样本、排列)的可视化结果,以帮助选择最合适的指标。 另外,用户可能遇到的问题包括如何选择合适的参数范围,或者如何处理高维参数空间的可视化。例如,Kα都是参数,可能需要二维图表来展示它们的组合效果,而如果还有其他参数,可能需要更复杂的可视化方法,如平行坐标图。 最后,需要确保推荐的图表可视化方法有相关的文献支持,比如引用中的内容提到适应度函数的选择,可能对应的研究论文中会有示例图表,可以引导用户参考这些文献以获得更详细的图示。</think>### VMD包络图表可视化方法 在VMD参数优化中,包络是衡量信号分解后模态分量稀疏性的重要指标。以下是常用的可视化方法及实现步骤: --- #### 1. **包络-参数热力图** 通过绘制包络随$K$(模态数)$\alpha$(惩罚因子)变化的二维热力图,可直观选择最优参数组合。 ```python import numpy as np import matplotlib.pyplot as plt import seaborn as sns # 假设已计算不同(K,α)对应的包络矩阵entropy_matrix K_values = [3,4,5,6] alpha_values = [100,500,1000] sns.heatmap(entropy_matrix, annot=True, xticklabels=alpha_values, yticklabels=K_values) plt.xlabel("Penalty Factor α") plt.ylabel("Number of Modes K") plt.title("Envelope Entropy Heatmap") plt.show() ``` --- #### 2. **模态分量包络谱对比** 分解信号后,对各模态分量进行希尔伯特变换生成包络谱,并标注包络值: $$H(x) = -\sum p_i \log p_i \quad \text{(包络公式)}$$ ```matlab % MATLAB示例:绘制模态分量及其包络谱 subplot(2,1,1); plot(imf); title(['IMF Envelope Entropy=', num2str(entropy)]); subplot(2,1,2); hilbert_env = abs(hilbert(imf)); plot(hilbert_env); title('Envelope Signal'); ``` --- #### 3. **适应度函数迭代曲线** 使用优化算法(如鲸鱼算法)时,绘制包络随迭代次数的下降过程: ```python def fitness_curve(history): plt.plot(history, marker='o') plt.xlabel("Iteration") plt.ylabel("Envelope Entropy") plt.title("Optimization Process") plt.grid(True) ``` --- #### 4. **三维参数空间可视化** 对$K$, $\alpha$, 包络构建三维曲面图,观察全局最小值位置: ```python from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.add_subplot(111, projection='3d') X, Y = np.meshgrid(alpha_values, K_values) ax.plot_surface(X, Y, entropy_matrix, cmap='viridis') ax.set_xlabel('α'); ax.set_ylabel('K'); ax.set_zlabel('Entropy') ``` --- #### 关键说明 - **包络计算流程**:对每个IMF分量进行希尔伯特变换→归一化能量分布→计算信息[^2] - **热力图解读**:颜色越深(低)表示参数组合更优,对应信号特征更突出[^1] - **参数选择建议**:优先选择值最低且模态数少的组合以避免过分解 ---
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值