目录
1 简介
针对从滚动轴承振动信号中所提取的故障信息精度低的问题,利用鲸鱼优化算法对变分模态分解模态个数K和惩罚参数α 寻优,然后根据VMD处理信号得到若干模态分量,筛选后进一步提取能量熵作为特征向量。使用特征提取向量,可进行后续轴承故障诊断等工作。
2 变分模态分解VMD原理
VMD能够自适应匹配每种模态的最佳中心频率和有限带宽,实现固有模态分量(IMF)有效分离,
其核心思想是构建和求解变分问题。
VMD实现步骤为:
由VMD分解步骤可知,分解信号前需要设置合适的模态个数K和惩罚参数α,K取值过大会导致过分解,反之,则会欠分解,α 取值过大,会造成频带信息丢失,反之,会信息冗余,所以需要确定最佳参数组合[K,α]。目前多用中心频率观察法,通过观察不同K值下的中心频率确定K值,但该法具有偶然性,且只能确定模态个数K,无法确定惩罚参数α。
3 鲸鱼优化算法优化VMD原理
3.1. 鲸鱼优化算法优化VMD原理及流程
使用鲸鱼优化算法(WOA)对VMD参数进行寻优,以包络熵极小值作为适应度函数,包络熵代表原始信号的稀疏特性,当IMF中噪声较多,特征信息较少时,则包络熵值较大,反之,则包络熵值较小。
信号x (i )(i = 1,2,…,N )包络熵EP 用以下公式计算,式中a (i ) 是由VMD 分解的k 个模态分量经Hilbert 解调后的包络信号,ε (i )是通过