鲸鱼算法优化变分模态分解(VMD)包络熵和参数的特征提取及MATLAB代码实现

该博客介绍了利用鲸鱼优化算法(WOA)来优化变分模态分解(VMD)的参数,旨在提高滚动轴承故障诊断中信号特征提取的精度。通过VMD分解和包络熵计算,确定最佳模态个数K和惩罚参数α,进而提升信号分解效果。优化过程和特征提取流程详细阐述,并展示了优化前后的时域图对比。
摘要由CSDN通过智能技术生成

目录

1 简介

2 变分模态分解VMD原理

3 鲸鱼优化算法优化VMD原理

3.1. 鲸鱼优化算法优化VMD原理及流程 

3.2. 特征提取流程

4 优化效果

4.1. VMD各分量信号时域图

4.2. 鲸鱼优化算法优化VMD各分量信号时域图

4.3 全部图像

5. 主要代码

main.m


1 简介

针对从滚动轴承振动信号中所提取的故障信息精度低的问题,利用鲸鱼优化算法对变分模态分解模态个数K和惩罚参数α 寻优,然后根据VMD处理信号得到若干模态分量,筛选后进一步提取能量熵作为特征向量。使用特征提取向量,可进行后续轴承故障诊断等工作。

2 变分模态分解VMD原理

VMD能够自适应匹配每种模态的最佳中心频率和有限带宽,实现固有模态分量(IMF)有效分离,
其核心思想是构建和求解变分问题。

VMD实现步骤为:

由VMD分解步骤可知,分解信号前需要设置合适的模态个数K和惩罚参数α,K取值过大会导致过分解,反之,则会欠分解,α 取值过大,会造成频带信息丢失,反之,会信息冗余,所以需要确定最佳参数组合[K,α]。目前多用中心频率观察法,通过观察不同K值下的中心频率确定K值,但该法具有偶然性,且只能确定模态个数K,无法确定惩罚参数α。

3 鲸鱼优化算法优化VMD原理

3.1. 鲸鱼优化算法优化VMD原理及流程 

使用鲸鱼优化算法(WOA)对VMD参数进行寻优,以包络熵极小值作为适应度函数,包络熵代表原始信号的稀疏特性,当IMF中噪声较多,特征信息较少时,则包络熵值较大,反之,则包络熵值较小。

信号x (i )(i = 1,2,…,N )包络熵EP 用以下公式计算,式中a (i ) 是由VMD 分解的k 个模态分量经Hilbert 解调后的包络信号,ε (i )是通过

评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值