HDU-1576 A/B (扩展欧几里得算法)

A/B

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6257    Accepted Submission(s): 4935


Problem Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
 

Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
 

Output
对应每组数据输出(A/B)%9973。
 

Sample Input
  
  
2 1000 53 87 123456789
 

Sample Output
  
  
7922 6060

思路: n = A%9973
     n = A - A/9973*9973;
     设 : A/B = x;
          A = Bx;
     代入 : Bx - A/9973*9973 = n;
     令 : y = A/9973
     得 : Bx - 9973y = n ;
     除 n 得 : Bx/n - 9973y/n = 1 = GCD( B , 9973 ) = Bx1 + 9973y1 = 1;
             x1 = x/n , y1 = y/n;
     使用扩展欧几里得算法可求得 x1,y1的值,x = x1 * n;

代码:

#include<stdio.h>
int x,y;
void gcd(int a,int b)
{
    int t;
    if(b==0)
    {
        x=1;
        y=0;
        return ;
    }
    gcd(b,a%b);
    t=x;
    x=y;
    y = t - (a/b)*y;
    return  ;
}
int main()
{
    long long n,b;
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%lld%lld",&n,&b);
        gcd(b,9973);
        if(x<0)//防止x小于0;
            x+=9973;
        x*=n;
        printf("%d\n",x%9973);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值