正解应该heap---wjj的排列序列



P3731wjj 的排列序列
时间限制 : - MS   空间限制 : 265536 KB  
评测说明 : 时限1000ms
问题描述






输入格式


第一行包含一个正整数n和一个正整数m,意思如题所述。
接下来m行,每行两个整数ui,vi,表示一个限制条件。 


输出格式


输出一行,表示 wjj 需要付出的最大代价。 


样例输入


3 1
3 1


样例输出


6


提示


数据范围
对于30%的数据,满足1≤n,m≤100。
对于100%的数据,满足1≤n,m≤10^5。 
样例解释 
题目要求要一个 1,2,3 的排列,并且限制条件为(3,1)。
符合要求的排列为(3,1,2), (3,2,1),(2,3,1)。
(3,1,2)中,b1=3,b2=1,b3=1。所以代价为3+1+1=5。
(3,2,1)中,b1=3,b2=2,b3=1。所以代价为3+2+1=6。

(2,3,1)中,b1=2,b2=2,b3=1。所以代价为2+2+1=5。



神他妈伪o(N+M)AC算法:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
#include<cstdlib>
using namespace std;
inline void _read(long long &x){ 
    char t=getchar();bool sign=true; 
    while(t<'0'||t>'9') 
    {if(t=='-')sign=false;t=getchar();} 
    for(x=0;t>='0'&&t<='9';t=getchar())x=x*10+t-'0'; 
    if(!sign)x=-x; 
}
long long n,m,ans;
vector<long long> a[100005];
bool mark[100005];
bool mark2[100005];
void work(long long x,long long t){
	mark[x]=false;
	long long i;
	for(i=0;i<a[x].size();i++){
		if(a[x][i]>t&&mark2[a[x][i]]==false){
			ans-=(a[x][i]-t);
			mark2[a[x][i]]=true;
		}
		if(mark[a[x][i]])work(a[x][i],t);
	}
}
int main(){
	long long i,j,k;
	_read(n);_read(m);
	for(i=1;i<=m;i++){
		long long x,y;
		_read(x);_read(y);
		//if(x>y)continue;
		mark[x]=true;
		a[x].push_back(y);
	}
	ans=n*(n+1)/(long long)2;
	for(i=1;i<=n;i++){
		if(mark[i])work(i,i);
	}
	cout<<ans;
}

正解:heap+top sort

代码:

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
#define LL long long
#define CLEAR(xxx) memset(xxx,0,sizeof(xxx))
using namespace std;
const int maxn=100000+5,inf=1e9;

int n,m,e;
int last[maxn],Next[maxn],to[maxn],degree[maxn];
vector<int> v;
priority_queue<int> heap; 

inline void _read(int &x){
    char ch=getchar(); bool mark=false;
    for(;!isdigit(ch);ch=getchar())if(ch=='-')mark=true;
    for(x=0;isdigit(ch);ch=getchar())x=x*10+ch-'0';
    if(mark)x=-x;
}

void Addedge(int x,int y){
	to[++e]=y;
	Next[e]=last[x];
	last[x]=e;
	degree[y]++;
}

int main(){
	int i,x,y,_min=inf;
	_read(n);_read(m);
	for(i=1;i<=m;i++){
		_read(x);_read(y);
		Addedge(x,y);
	}
	for(i=1;i<=n;i++)
		if(!degree[i])heap.push(i);
	while(!heap.empty()){
		int x=heap.top(); heap.pop();
		v.push_back(x);
		for(i=last[x];i;i=Next[i])
			if(--degree[to[i]]==0)heap.push(to[i]);
	}
	LL ans=0;
	for(i=0;i<v.size();i++){
		_min=min(_min,v[i]);
		ans+=(LL)_min;
	}
	cout<<ans<<endl;
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值