题目描述
给定一个长度为 n 的序列 a[1..n],定义函数 f(b[1..m]) 的值为在 [0,m-1] 内满足如下条件的 i 的数目:
b 中前 i 个数异或起来的值小于 b 中前 i +1个数异或起来的值。
对于 a[1..n] 的每个子序列 b[1..m],求f(b[1..m])之和。
做法
显然只需要对每个位置i求出前面多少子序列异或和比再异或它之后小即可,后面部分乘一个2的次幂。
假如
a<b
则我们知道a^b的第一个1出现在b中。
因此找到a[i]最高位的1,前面的异或和在这一位是0即可。
因此再维护c[j][0/1]两个值表示前i个里多少子序列第j位是0/1。
#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
using namespace std;
typedef long long ll;
const int maxn=100000+10,maxd=31,mo=998244353;
int a[maxn],c[maxd+10][2],two[maxn];
int i,j,k,l,t,n,m,ans;
int main(){
scanf("%d",&n);
fo(i,1,n) scanf("%d",&a[i]);
two[0]=1;
fo(i,1,n) two[i]=(ll)two[i-1]*2%mo;
fo(i,0,maxd) c[i][0]=1;
fo(i,1,n){
fd(j,maxd,0)
if ((a[i]&(1<<j))>0) break;
(ans+=(ll)c[j][0]*two[n-i]%mo)%=mo;
fo(j,0,maxd){
l=c[j][0];t=c[j][1];
if ((a[i]&(1<<j))>0){
c[j][0]=(l+t)%mo;
c[j][1]=(l+t)%mo;
}
else{
c[j][0]=l*2%mo;
c[j][1]=t*2%mo;
}
}
}
printf("%d\n",ans);
}