- 博客(5)
- 收藏
- 关注
原创 讲一讲torch中的torch.autograd.backward()
x是一个变量,相当于一个basic块,如果没有根据x搭建成y,梯度这个概念也毫无意义了【有目标y,有构成x,才有梯度概念】。我们会将前面的y=(y1,y2,…就知道为什么如果y的值只给了表达式,就应该加上.sum(),以使得y可以进行反向传播操作。除了对角线外,雅可比矩阵其他位置都是0,但我们反向传播不会用到这些值,也可以理解为无意义的计算了。如果我们求向量对向量的导数:我们会得到一个雅可比矩阵(下面的情况说的是x为1*d形状的向量)。观察上面例子中的c,实际上,c输出的是一个值,也就是一个标量。
2025-02-20 16:52:08
1537
原创 5min 完成 Deepseek API部署:硅基流动API+Cheery Studio告别卡顿!
在官网使用DeepSeek时经常会出现服务器繁忙,且官方因最近客户过多,也关闭了API的购买。那么,我们就换一种方式,利用硅基流动的服务器+DeepSeek+Cherry Studio 轻松连接DeepSeek目前:硅基流动支持所有版本的DeepSeek使用。R1 V3 以及各个版本的蒸馏模型,都可以调用。(其实不止DeepSeek,还有很多大模型都可以调用)。
2025-02-12 20:31:41
1294
原创 深度学习模型书写调用的总结
(1)还是继承了nn.Model,也就是说我们可以直接根据向nn.Sequential传入我们要计算的x变量,进入后,nn.Sequential会依次执行放入的模块。当一个类定义了 _call_() 方法时,它的实例可以像调用函数一样被调用,而不仅仅是通过类中的其他方法来调用。(2)关注forward,在继承nn.Model的基础上,def forward规定为一个隐式调用,如果实例化。,但是,这只针对于官方定义好的模型,如果需要自己放入自己的类,自己的类中必须写。表示输入特征的维度,即输入数据的维度。
2024-12-17 15:11:59
948
原创 有关python中__new__与__init__的学习
我们可以这么理解它们之间的关系,__new__是开辟疆域的大将军,而__init__是在这片疆域上辛勤劳作的小老百姓,只有__new__执行完后,开辟好疆域后,__init__才能工作,结合到代码,也就是__new__的返回值正是__init__中self。(ps:如果__new__方法返回None,则__init__方法不会被执行,并且返回值只能调用父类中的__new__方法,而不能调用毫无关系的类的__new__方法)。重温并整理了一下有关py中__new__与__init__的知识。
2024-11-30 17:38:36
1905
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人