理解F1指标

理解平均数

理解还是靠例子更加直观。

算数平均数的例子:

调和平均数的例子:

调和平均数是算术平均数的一种特殊形式。

由上面的例子:我们发现

钱的单位是统一的,但是不同糖果见斤的计量方式不同。

1块钱代表1/2A糖果;1块钱代表1/4B糖果。

所以:

当问题中给到的数据不足以让我们直接计算的时候,即我们不能直接得到分子的值和分母的值时(简单的加减法不属于不能直接得到的情况),我们需要通过计算来得到对应的值(通常涉及乘除法),这里牵扯到两种情况,一是不能直接得到分子的值,但可以直接得到分母的值;

二是不能直接得到分母的值,但可以直接得到分子的值。(一般不存在分子分母都无法直接得到的情况。)

理解F1

查准率=TP/TP+FP

查全率=TP/TP+FN

F1分数(F1 Score),是统计学中用来衡量二分类(或多任务二分类)模型精确度的一种指标。它同时兼顾了分类模型的准确率和召回率。F1分数可以看作是模型准确率和召回率的一种加权平均,它的最大值是1,最小值是0,值越大意味着模型越好

实际上用来理解F1也很容易了:按照上面调和平均数的简单例子。F1指标可以视为模型查准率和模型查全率的一种平均评价指标(简单点说:同时衡量准确和全面,都要兼顾到)。

分子的2代表评价的两个维度(准确和全面)。

分母的1/percision;1/recall代表什么呢?

继续类比:

2元1斤糖果A。有1元——转化为1/4斤糖果A。

4元1斤糖果B。有1元——转化为1/2斤糖果B。

结果:

Precision为一个评价维度——转化为:有一个评价维度,那么对应1/Percision单位的Percision。

Recall为一个评价维度——转化为:有一个评价维度,那么对应1/Recall单位的Recall。

这样理解F1就非常清晰了,它的作用就是兼顾了准确和召唤的评价指标!

参考文章:

1如何理解调和平均数 - 知乎

2分类问题的评价指标:多分类【Precision、 micro-P、macro-P】、【Recall、micro-R、macro-R】、【F1、 micro-F1、macro-F1】_多分类评价指标-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值