理解平均数
理解还是靠例子更加直观。
算数平均数的例子:
调和平均数的例子:
调和平均数是算术平均数的一种特殊形式。
由上面的例子:我们发现
钱的单位是统一的,但是不同糖果见斤的计量方式不同。
1块钱代表1/2斤A糖果;1块钱代表1/4斤B糖果。
所以:
当问题中给到的数据不足以让我们直接计算的时候,即我们不能直接得到分子的值和分母的值时(简单的加减法不属于不能直接得到的情况),我们需要通过计算来得到对应的值(通常涉及乘除法),这里牵扯到两种情况,一是不能直接得到分子的值,但可以直接得到分母的值;
二是不能直接得到分母的值,但可以直接得到分子的值。(一般不存在分子分母都无法直接得到的情况。)
理解F1
查准率=TP/TP+FP
查全率=TP/TP+FN
F1分数(F1 Score),是统计学中用来衡量二分类(或多任务二分类)模型精确度的一种指标。它同时兼顾了分类模型的准确率和召回率。F1分数可以看作是模型准确率和召回率的一种加权平均,它的最大值是1,最小值是0,值越大意味着模型越好
实际上用来理解F1也很容易了:按照上面调和平均数的简单例子。F1指标可以视为模型查准率和模型查全率的一种平均评价指标(简单点说:同时衡量准确和全面,都要兼顾到)。
分子的2代表评价的两个维度(准确和全面)。
分母的1/percision;1/recall代表什么呢?
继续类比:
2元1斤糖果A。有1元——转化为1/4斤糖果A。
4元1斤糖果B。有1元——转化为1/2斤糖果B。
结果:
Precision为一个评价维度——转化为:有一个评价维度,那么对应1/Percision单位的Percision。
Recall为一个评价维度——转化为:有一个评价维度,那么对应1/Recall单位的Recall。
这样理解F1就非常清晰了,它的作用就是兼顾了准确和召唤的评价指标!
参考文章: