常用数论函数学习笔记

前言

狄利克雷卷积是个非常神奇的东西,它能将一些看似无关的数论函数联系起来。

数论函数

数论函数是一种将正整数映射到实数的函数。

常用数论函数

单位元函数: ε ( n ) = [ n = 1 ] \varepsilon(n)=[n=1] ε(n)=[n=1]

幂函数: id k ( n ) = n k \text{id}_k(n)=n^k idk(n)=nk id 1 ( n ) \text{id}_1(n) id1(n) 通常记作 id ( n ) \text{id}(n) id(n)

恒等函数: id ( n ) = n \text{id}(n)=n id(n)=n

常数函数: 1 ( n ) = 1 1(n)=1 1(n)=1

除数函数: σ k ( n ) = ∑ d ∣ n d k \sigma_k(n)=\sum_{d|n}d^k σk(n)=dndk σ 0 \sigma_0 σ0 通常记作 d ( n ) d(n) d(n) τ ( n ) \tau(n) τ(n) σ 1 ( n ) \sigma_1(n) σ1(n) 通常记作 σ ( n ) \sigma(n) σ(n)

欧拉函数: φ ( n ) = ∑ i = 1 n [ gcd ( i , n ) = 1 ] \varphi(n)=\sum_{i=1}^n[\text{gcd}(i,n)=1] φ(n)=i=1n[gcd(i,n)=1]

莫比乌斯函数: μ ( n ) = { 1 n = 1 0 n 含有平方因子 ( − 1 ) k k 为 n 的本质不同质因子个数 \mu(n)= \begin{cases} 1 & n=1 \\ 0 & n 含有平方因子 \\ (-1)^k & k 为 n 的本质不同质因子个数 \end{cases} μ(n)= 10(1)kn=1n含有平方因子kn的本质不同质因子个数

积性函数

若函数 f ( n ) f(n) f(n) 满足 f ( 1 ) = 1 f(1)=1 f(1)=1 且对于任意两个互质的数 a , b a, b a,b 都有 f ( a ) f ( b ) = f ( a b ) f(a)f(b)=f(ab) f(a)f(b)=f(ab),则 f ( n ) f(n) f(n) 是积性函数。

狄利克雷卷积

对于两个数论函数 f ( n ) f(n) f(n) g ( n ) g(n) g(n),它们的狄利克雷卷积定义为 ( f ∗ g ) ( n ) = ∑ x y = n f ( x ) g ( y ) = ∑ d ∣ n f ( d ) g ( n d ) (f*g)(n) = \sum_{xy=n}f(x)g(y) = \sum_{d|n}f(d)g(\frac{n}{d}) (fg)(n)=xy=nf(x)g(y)=dnf(d)g(dn),简记为 f ∗ g f*g fg

常用公式

1. 1. 1. ( f ∗ ε ) ( n ) = f ( n ) (f*\varepsilon)(n)=f(n) (fε)(n)=f(n)

证明:

( f ∗ ε ) ( n ) = ∑ d ∣ n f ( d ) ε ( n d ) = ∑ d ∣ n f ( d ) [ n d = 1 ] = ∑ d ∣ n f ( d ) [ d = n ] = f ( n ) \begin{aligned} (f*\varepsilon)(n) & =\sum_{d|n}f(d)\varepsilon(\frac{n}{d})\\ & =\sum_{d|n}f(d)[\frac{n}{d}=1] \\ & =\sum_{d|n}f(d)[d=n] \\ & =f(n) \end{aligned} (fε)(n)=dnf(d)ε(dn)=dnf(d)[dn=1]=dnf(d)[d=n]=f(n)

2. 2. 2. ( f ∗ 1 ) ( n ) = ∑ d ∣ n f ( d ) (f*1)(n)=\sum_{d|n}f(d) (f1)(n)=dnf(d)

证明:

( f ∗ 1 ) ( n ) = ∑ d ∣ n f ( d ) 1 ( n d ) = ∑ d ∣ n f ( d ) \begin{aligned} (f*1)(n) & =\sum_{d|n}f(d)1(\frac{n}{d}) \\ & =\sum_{d|n}f(d) \end{aligned} (f1)(n)=dnf(d)1(dn)=dnf(d)

3. 3. 3. ( id k ∗ 1 ) ( n ) = σ k ( n ) (\text{id}_k*1)(n)=\sigma_k(n) (idk1)(n)=σk(n)

证明:

( id k ∗ 1 ) ( n ) = ∑ d ∣ n id k ( n ) = ∑ d ∣ n n k = σ k ( n ) \begin{aligned} (\text{id}_k*1)(n) & =\sum_{d|n}\text{id}_k(n) \\ & =\sum_{d|n}n^k \\ & =\sigma_k(n) \end{aligned} (idk1)(n)=dnidk(n)=dnnk=σk(n)

4. 4. 4. ( φ ∗ 1 ) ( n ) = id ( n ) (\varphi*1)(n)=\text{id}(n) (φ1)(n)=id(n)

证明:

我们先证 ( φ ∗ 1 ) ( p m ) = id ( p m ) (\varphi*1)(p^m)=\text{id}(p^m) (φ1)(pm)=id(pm) p p p 是质数,且 m ≥ 1 m\ge 1 m1

( φ ∗ 1 ) ( p m ) = ∑ d ∣ p m φ ( d ) 1 ( p m d ) = ∑ d ∣ p m φ ( d ) = ∑ i = 0 m φ ( p i ) = φ ( 1 ) + ∑ i = 1 m φ ( p i ) = 1 + ∑ i = 1 m p i − p i − 1 = p m = id ( p m ) \begin{aligned} (\varphi*1)(p^m) & =\sum_{d|p^m}\varphi(d)1(\frac{p^m}{d}) \\ & =\sum_{d|p^m}\varphi(d) \\ & =\sum_{i=0}^{m}\varphi(p^i) \\ & =\varphi(1)+\sum_{i=1}^{m}\varphi(p^i) \\ & =1+\sum_{i=1}^{m}p^i-p^{i-1} \\ & =p^m \\ & =\text{id}(p^m) \end{aligned} (φ1)(pm)=dpmφ(d)1(dpm)=dpmφ(d)=i=0mφ(pi)=φ(1)+i=1mφ(pi)=1+i=1mpipi1=pm=id(pm)

对于任意正整数 n n n,由唯一分解定理得 n = ∏ i = 1 s p i k i n=\prod_{i=1}^{s}p_i^{k_i} n=i=1spiki p i p_i pi 是质数。

( φ ∗ 1 ) ( n ) = ( φ ∗ 1 ) ( ∏ i = 1 s p i k i ) = ∏ i = 1 s ( φ ∗ 1 ) ( p i k i ) = ∏ i = 1 s id ( p i k i ) = id ( ∏ i = 1 s p i k i ) = id ( n ) \begin{aligned} (\varphi*1)(n) & =(\varphi*1)(\prod_{i=1}^{s}p_i^{k_i}) \\ & =\prod_{i=1}^{s}(\varphi*1)(p_i^{k_i}) \\ & =\prod_{i=1}^{s}\text{id}(p_i^{k_i}) \\ & =\text{id}(\prod_{i=1}^{s}p_i^{k_i}) \\ & =\text{id}(n) \end{aligned} (φ1)(n)=(φ1)(i=1spiki)=i=1s(φ1)(piki)=i=1sid(piki)=id(i=1spiki)=id(n)

2 2 2 个等号成立是因为 ( φ ∗ 1 ) ( n ) (\varphi*1)(n) (φ1)(n) 是积性函数,第 4 4 4 个等号成立是因为 id ( n ) \text{id}(n) id(n) 是积性函数。

5. 5. 5. ( μ ∗ 1 ) ( n ) = ε ( n ) (\mu*1)(n)=\varepsilon(n) (μ1)(n)=ε(n)

证明:

n n n 为任意正整数,由唯一分解定理得 n = ∏ i = 1 s p i k i n=\prod_{i=1}^{s}p_i^{k_i} n=i=1spiki p i p_i pi 是质数,设 n ′ = ∏ i = 1 s p i n'=\prod_{i=1}^{s}p_i n=i=1spi

( μ ∗ 1 ) ( n ) = ( μ ∗ 1 ) ( n ′ ) = ∑ d ∣ n ′ μ ( d ) = ∑ i = 0 s ( s i ) ( − 1 ) i = ( 1 − 1 ) s = [ s = 0 ] = [ n = 1 ] = ε ( n ) \begin{aligned} (\mu*1)(n) & = (\mu*1)(n') \\ & =\sum_{d|n'}\mu(d) \\ & =\sum_{i=0}^{s}\binom{s}{i}(-1)^i \\ & =(1-1)^s \\ & =[s=0] \\ & =[n=1] \\ & =\varepsilon(n) \end{aligned} (μ1)(n)=(μ1)(n)=dnμ(d)=i=0s(is)(1)i=(11)s=[s=0]=[n=1]=ε(n)

1 1 1 个等号成立是因为若 d d d 含有平方因子,则 μ ( d ) = 0 \mu(d)=0 μ(d)=0

3 3 3 个等号成立是根据莫比乌斯函数的定义,枚举 d d d 的质数个数。

莫比乌斯反演

已知 g ( n ) = ∑ d ∣ n f ( n ) g(n)=\sum_{d|n}f(n) g(n)=dnf(n),则 f ( n ) = ∑ d ∣ n μ ( d ) g ( n d ) f(n)=\sum_{d|n}\mu(d)g(\frac{n}{d}) f(n)=dnμ(d)g(dn)

证明:

g ( n ) = ∑ d ∣ n f ( n ) = ( f ∗ 1 ) ( n ) g(n)=\sum_{d|n}f(n)=(f*1)(n) g(n)=dnf(n)=(f1)(n)

方程两边同时乘上 μ ( n ) \mu(n) μ(n)

( g ∗ μ ) ( n ) = ( f ∗ μ ∗ 1 ) ( n ) = ( f ∗ ε ) ( n ) = f ( n ) \begin{aligned} (g*\mu)(n) & =(f*\mu*1)(n) \\ & =(f*\varepsilon)(n) \\ & =f(n) \end{aligned} (gμ)(n)=(fμ1)(n)=(fε)(n)=f(n)

f ( n ) = ( g ∗ μ ) ( n ) = ∑ d ∣ n μ ( d ) g ( n d ) f(n)=(g*\mu)(n)=\sum_{d|n}\mu(d)g(\frac{n}{d}) f(n)=(gμ)(n)=dnμ(d)g(dn)

常用推论

1. 1. 1. gcd ( i , j ) = ∑ d ∣ gcd ( i , j ) φ ( d ) \text{gcd}(i, j)=\sum_{d|\text{gcd}(i, j)}\varphi(d) gcd(i,j)=dgcd(i,j)φ(d)

证明:

n = id ( n ) = ( φ ∗ 1 ) ( n ) = ∑ d ∣ n φ ( d ) n=\text{id}(n)=(\varphi*1)(n)=\sum_{d|n}\varphi(d) n=id(n)=(φ1)(n)=dnφ(d)

所以,

n = ∑ d ∣ n φ ( d ) n=\sum_{d|n}\varphi(d) n=dnφ(d)

gcd ( i , j ) = ∑ d ∣ gcd ( i , j ) φ ( d ) \text{gcd}(i, j)=\sum_{d|\text{gcd}(i, j)}\varphi(d) gcd(i,j)=dgcd(i,j)φ(d)

2. 2. 2. [ gcd ( i , j ) = 1 ] = ∑ d ∣ gcd ( i , j ) μ ( d ) [\text{gcd}(i, j)=1]=\sum_{d|\text{gcd}(i, j)}\mu(d) [gcd(i,j)=1]=dgcd(i,j)μ(d)

证明:

[ n = 1 ] = ε ( n ) = ( μ ∗ 1 ) ( n ) = ∑ d ∣ n μ ( d ) [n=1]=\varepsilon(n)=(\mu*1)(n)=\sum_{d|n}\mu(d) [n=1]=ε(n)=(μ1)(n)=dnμ(d)

所以,

[ n = 1 ] = ∑ d ∣ n μ ( d ) [n=1]=\sum_{d|n}\mu(d) [n=1]=dnμ(d)

[ gcd ( i , j ) = 1 ] = ∑ d ∣ gcd ( i , j ) μ ( d ) [\text{gcd}(i, j)=1]=\sum_{d|\text{gcd}(i, j)}\mu(d) [gcd(i,j)=1]=dgcd(i,j)μ(d)

例题

洛谷 P2522 [HAOI2011] Problem b

最后,送给大家一只可爱的胡桃。

可爱的胡桃

  • 27
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值