29.两数相除

假设有两个数,A和B。B为2^n,期中n>=0,A>=0。则:

要求A * B的话,则可使用<<操作符,A << n。

要求A / B的话,则可使用>>操作符,A >> n。

要求A % B的话,则可使用&操作符,A&(B-1)。

如果A为负数的话,则未必成立。比如,当A为-1,B为2的时候,可知(-1)%2=-1,而-(1)&0=0。记住,当我们把乘法,除法及取模运算转化为位运算时,都要求A>=0。

解题思路:容易想到用减法代替除法,但是若出现除数很小,而被除数很大的情况,则单纯的减法很耗时间,所以想到放大除数,但是不可以使用乘除,那么就用移位来实现。

因此有以下的思路:每次将除数复制后进行移位到比被除数小的最大的数(同时设置一个mask,初始为1, 同时进行移位),再将被除数减去该数,此时mask的值就为减去的除数的个数。另外需要注意的是符号的问题,有负号的话不方便比较大小,所以先将除数和被除数都取绝对值,若两者符号不同,需要对最后的结果取相反数(位运算实现,取反加一或者减一再取反)。

PS:因为只有32位,考虑到在运算过程中涉及2^31,换成无符号格式,被INT_MAX和INT_MIN这两个数折磨得不像话。

考虑比如出现初始为INT_MIN,怎么去掉它的符号;

结果为INT_MIN的时候要怎么从2^31得到INT_MIN;

除数为2^31时,移位会有什么影响。

class Solution {                                                                                       
public:                                                                                                
    int divide(int dividend, int divisor) {
        if(dividend == INT_MIN && divisor == -1)
            return INT_MAX;
        int sign = (dividend ^ divisor) >= 0 ? 1 : -1;
        unsigned int mydivisor = divisor == INT_MIN ? (unsigned int) (INT_MAX) + 1:abs(divisor);
        unsigned int mydividend = dividend == INT_MIN ? (unsigned int) (INT_MAX) + 1:abs(dividend);
        unsigned int res = 0;
        while(mydividend >= mydivisor){
            unsigned int temp = mydivisor, mask = 1;
            while(temp && mydividend >= temp){
                mydividend -= temp;
                res += mask;
                mask <<= 1;
                temp <<= 1;
            }
        }
        if(sign == -1)
            res = ~(int)(res - 1);
        return res;
    }                                                                                         
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值