《·放晴》

一场雨后的篮球场上,尽管还有水迹,但少年们对运动的热情不减。小树林恢复了生机,空气中弥漫着清香,一道彩虹出现在天空,仿佛预示着希望与梦想。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不知何时
雨 悄悄停了
风 也屏住了呼吸

在篮球场上 虽还留有斑斑水迹
却挡不住少年对运动炽热的心
小树林儿里也有了往日的窃窃私语

走在宿舍与图书馆的小路上
嗅到些许清香
心灵也得到了平静

仰望天空
飘过几朵浮云
一道彩虹挂在天空
似乎看到一只大雁飞向天际
也许 它是带着自己的梦想去旅行

### 一阶马尔可夫模型介绍 在一阶马尔可夫模型中,系统的未来状态仅依赖于当前状态而与之前的历史无关。具体来说,在时间序列中的任意时刻 \( t \),如果满足条件: \[ P(q_t = s_i | q_1 = s_1, q_2 = s_2,\dots ,q_{t-1} = s_j) = P(q_t = s_i | q_{t-1} = s_j)[^3] \] 那么该系统就被认为遵循了一阶马尔可夫属性。 这种特性使得建模变得相对简单,因为只需要考虑相邻两个时间段之间的转移情况就可以描述整个过程的发展趋势。对于每一个可能的状态组合,都有一个对应的转移概率来表示从前一个状态转移到下一个状态的可能性大小。 ### 应用实例:天气预报 假设有一个简单的例子用于说明如何利用一阶马尔可夫模型来进行天气预测。假设有两种不同的天气状况:“晴天”和“雨天”。通过长期观测可以得到不同日期间这两种天气相互转变的概率分布表(即转换概率矩阵)。有了这个表格之后,只要知道今天的天气是什么样的,就能计算明天会下雨还是放晴的概率了。 ```python import numpy as np # 定义状态空间 states = ['Sunny', 'Rainy'] # 转移概率矩阵 A (A[i][j] 表示从 j 状态到 i 状态的转移概率) transition_matrix = np.array([[0.7, 0.3], # Sunny -> Sunny or Rainy [0.4, 0.6]]) # Rainy -> Sunny or Rainy def predict_next_day(current_state): index = states.index(current_state) next_probabilities = transition_matrix[:,index] return np.random.choice(states, p=next_probabilities) print(predict_next_day('Sunny')) ``` 此代码片段展示了基于给定的一阶马尔可夫链定义下的天气变化模拟器。它接受当前天气作为输入参数,并返回下一天最有可能发生的天气类型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tachypsychia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值