《利用python进行数据分析》第6章学习笔记(2)

这篇博客详细介绍了Python中DataFrame的to_csv方法,包括index、header、sep、na_rep和columns参数的使用。此外,还讲解了如何手工处理分隔符格式,使用csv.reader和csv.writer进行读写操作,以及JSON数据的load、loads、dump和dumps方法。内容覆盖了CSV文件的输出和定制,以及JSON数据的读写操作。
摘要由CSDN通过智能技术生成

第6章 数据加载、存储与文件格式(Part2)

目录

第6章 数据加载、存储与文件格式(Part2)

csv文件输出

to_csv方法

index、header参数

sep参数

na_rep参数

columns参数

Series的to_csv方法

手工处理分隔符格式

csv.reader读入分隔符文件

自定义csv文件形式

csv.writer输出分隔符文件

writerow()和writerows()的区别

JSON数据

读入:load 与 loads

输出:dump 与 dumps


csv文件输出

to_csv方法

利用DataFrame中的to_csv方法,我们可以将数据写到一个以逗号分隔的文件中。

,something,a,b,c,d,message
0,one,1,2,3.0,4,
1,two,5,6,,8,world
2,three,9,10,11.0,12,foo

 我们读入如上csv文件:

file = 'ex5.csv'
data = pd.read_csv(file, index_col = 0)

将储存数据的DataFrame输入到out.csv中:

data.to_csv('out.csv')

结果:

In [274]: data
Out[274]: 
  something  a   b     c   d message
0       one  1   2   3.0   4     NaN
1       two  5   6   NaN   8   world
2     three  9  10  11.0  12     foo

In [275]: !type out.csv
,something,a,b,c,d,message
0,one,1,2,3.0,4,
1,two,5,6,,8,world
2,three,9,10,11.0,12,foo

注意,输出DataFrame的时候,会默认输出行、列标签。

index、header参数

当然,如果你不想输出行、列标签,可以分别用index、header属性禁用:

#code
data.to_csv('out.csv', index = False, header = False)

#output
one,1,2,3.0,4,
two,5,6,,8,world
three,9,10,11.0,12,foo

sep参数

自定义分隔符

#code
data.to_csv('out.csv', sep = '|')

#output
|something|a|b|c|d|message
0|one|1|2|3.0|4|
1|two|5|6||8|world
2|three|9|10|11.0|12|foo

na_rep参数

缺失值在输出结果中被表示为空字符串。你可能希望其被表示为别的字符串:

#code
data.to_csv('out.csv', na_rep = 'EMMM')

#output
,something,a,b,c,d,message
0,one,1,2,3.0,4,EMMM
1,two,5,6,EMMM,8,world
2,three,9,10,11.0,12,foo

columns参数

书上为cols,应该是以前的版本的名称,或是随版本更替被columns取代。columns参数可以让你只写出部分列,并按指定顺序排列:

#code
data.to_csv(&
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值