随着大模型应用落地速度加快,企业级应用相关技术模块日渐成熟,在各个行业领域,企业改革现有业务流程与生产方式、使用AI提高运作效率的可行性大幅度提升。其中,金融行业作为数据密集、更新快速的代表性行业之一,经常与前沿IT科技强绑定,是企业级技术更新的先锋领域。
以目前相当热门的企业知识库问答产品为例,各大银行、券商已逐步开启引入AI技术提升工作效率的尝试。2024年初,邮储银行开始为一线柜台工作人员提供AI问答系统,并计划在年内接入信贷平台、业务前端,扩大系统适用范围;农业银行申请了智能问答方法专利,可实现精准自动学习回答问题。同时,更多中小型机构看到AI带来的业务效率增益可能性,企业的数字化需求能够以低成本、便捷的方式实现。
AI的风吹遍金融行业。略过泛泛而谈,我们希望探讨,在实际业务场景中,知识库问答产品能起到什么作用?要落地企业级应用,目前的技术能实现怎样的产品性能?
1 LLM时代的金融知识库问答:不止是“知识集合”
知识库(Knowledge Base)是一个存储、组织和提供知识信息的系统,通常具有结构化、访问便捷、动态更新、多源整合等特点。
知识库在金融行业的应用起源于金融信息化的早期阶段。伴随信息技术的发展,金融机构开始意识到有效管理和利用信息资产的重要性。最初,知识库的应用主要集中在信息收集和存储上,目的是为了提高检索的效率和准确性。传统的知识库通过关键词匹配等手段实现知识分类与检索,其构建及更新维护往往需要花费大量的人力和时间成本,且仍然存在规则较为呆板、知识提取不便等问题。
在金融业务复杂化和金融产品多样化的过程中,金融机构需要寻求更高级的知识管理和分析工具。知识库开始集成更复杂的信息处理技术,例如数据挖掘、机器学习和自