- 博客(1010)
- 资源 (20)
- 收藏
- 关注
原创 LangChain入门(十二)LangChain里的智能“降级”fallback-chain实战
本文深入解析LangChain的Fallback Chain机制,通过实际代码示例展示如何构建具备自动降级能力的AI应用系统。当主模型服务异常时,系统能无缝切换备用方案,保障服务持续可用。
2026-01-25 15:01:42
466
原创 Agent时代产品经理的进化:从需求翻译到问题塑造者
AI Agent正在重塑产品经理的角色。传统需求文档撰写者面临淘汰,而擅长问题定义和解决方案评估的PM将获得更大价值。本文探讨Agent时代产品经理需要掌握的新技能和工作模式转变。
2026-01-24 22:57:07
737
原创 LangChain入门(十一)- 如何做到多模型路由策略以及智能切换LLM
本文深入探讨LangChain中实现大语言模型智能切换的实用方案,通过质量检测、熔断机制和性能监控,构建高可用的AI应用系统,为开发者提供企业级解决方案。
2026-01-24 19:52:23
1212
原创 向量数据库:从数学原理到技术落地的深度剖析
本文将系统解析向量数据库的核心技术原理,涵盖向量表示、嵌入技术、索引算法、相似度计算等关键环节。通过深入浅出的技术解读,帮助开发者全面理解这一推动AI应用落地的关键基础设施。
2026-01-23 14:45:54
589
原创 无师自通:Meta如何让AI在零数据环境下自我进化出顶级搜索能力
Meta的Dr. Zero框架突破性地实现了AI在零人类标注数据情况下的自我进化。通过提问者与解答者的自我博弈机制,配合创新的跳数分组优化算法,大语言模型仅凭搜索引擎就能训练出超越监督学习水平的搜索智能体。这种方法为解决数据稀缺问题开辟了新路径。
2026-01-23 14:40:31
838
原创 AI Agent开发第98课-LangChain入门(十)- 用SequentialChain构建智能意图识别系统
本文深入解析LangChain中的SequentialChain,通过一个完整的意图识别案例展示其强大功能。对比手动串联链的实现方式,揭示SequentialChain在可维护性和扩展性上的优势,为开发者提供实用的架构设计思路。
2026-01-22 22:54:22
542
原创 AI Agent开发第97课-LangChain入门(九)- 从单元测试到行为轨迹追踪,让你的AI不再“乱拐弯”
想知道你的AI智能体是真聪明还是装聪明?本文带你深入LangChain测试体系,从基础单元测试到高级行为轨迹分析,教你如何像老司机一样把控AI的“驾驶行为”,避免模型在路上“翻车”又“绕路”。
2026-01-21 21:49:58
573
原创 AI Agent 开发第96课-LangChain入门(八)- 本地向量化-sentence-transformers的正确使用方式
为什么国内开发者做RAG首选sentence-transformers?本文系统拆解其在LangChain中的定位、原理与最佳实践,澄清“HuggingFaceEmbeddings是否必须”“是否联网下载”等核心疑问,助你构建安全、高效、可维护的私有化语义系统。
2026-01-21 21:12:09
457
原创 AI Agent开发第95课-LangChain入门(七)- 利用LangChain的MapReduce做个支持可续写的爆文生成器
本文基于LangChain的MapReduce模式,构建一个支持可续写的爆文生成器。用户可自定义目标字数、读者群体、语言口吻、写作风格及附加约束条件。系统将长文任务分解为多个可控子段落,分别生成后智能合并,有效规避上下文窗口限制。实测表明,该方法生成内容逻辑连贯、风格统一,无典型AI生硬感。笔者认为,此类架构之所以效果突出,关键在于将“全局一致性”与“局部灵活性”解耦——先通过reduce阶段对齐主旨,再在map阶段释放细节创造力。这不仅是工程技巧,更是对语言生成本质的一种务实理解。生成器输出质量已达到业界
2026-01-20 23:57:29
1179
1
原创 AI Agent开发第94课-LangChain入门(六)- 超长文本处理的优雅解法:10行代码搞定180K字摘要
本文详解如何用LangChain内置的map_reduce机制,仅需10余行代码高效处理16K、32K甚至180K字的超长文本摘要问题,避免传统方案中的超时与性能瓶颈,支持本地小模型或Qwen-Turbo等快速大模型,实现低延迟、高可用的上下文压缩。
2026-01-20 15:14:52
665
原创 RAG不是万能的:没有可观测性,你的系统只是在“碰运气”
RAG系统上线后表现如何?别再靠“感觉”判断了。本文系统拆解RAG可观测性评估的核心指标,从检索到生成,从自洽性到显式验证,告诉你如何用可量化、可追踪、可归因的方法,把RAG从Demo变成真正可信的生产级AI产品。
2026-01-20 15:00:45
772
原创 RAG不是万能药:一份来自实战的避坑指南
本文系统梳理RAG落地过程中的26个高频问题,从选型决策、分块策略、检索优化到评估维护,结合工程实践与原理分析,揭示“看似简单”的RAG背后隐藏的技术细节与调优空间。适合正在构建或优化RAG系统的开发者收藏参考。
2026-01-19 16:00:21
942
原创 AI Agent开发第93课-langchain入门(五)- 用mongodb管理提示词以及以restful service暴露
本文系统讲解如何用 MongoDB 管理 LangChain 提示词模板,并通过 FastAPI 以 RESTful 接口(含 SSE 流式响应)对外暴露服务,兼顾工程可维护性与生产级性能。
2026-01-18 20:01:52
759
原创 就在刚刚谷歌悄悄加上了Antigravity ,从而彻底打响了AI编程的生态战争
谷歌悄然上线 Antigravity 的 Agent Skills 功能,兼容 Claude Code 技能标准、引入动态技能调用与全栈自动化能力,并搭配 Gemini 3 Flash 提速。这不仅是产品更新,更是对 AI 编码助手生态主导权的争夺。
2026-01-17 20:09:50
665
原创 AI Agent开发第92课-LangChain入门(四)- 变量与提示词的可维护最佳实践
LangChain 不是“写死 Prompt 的玩具”,而是支持高度解耦、可配置、可迭代的工程框架。本文系统解析其工作流构建逻辑,并给出变量与提示词外置的最佳实践,帮助开发者摆脱硬编码陷阱,迈向生产级 LLM 应用。
2026-01-17 15:22:45
273
原创 AI Agent开发第91课-LangChain入门(三)- 如何集成生产环境的自定义的LLM接口
本文系统讲解在 LangChain 中集成自研 LLM Gateway 的方法,重点剖析 OpenAI 兼容接口的设计规范、企业级部署优势,并通过代码示例展示如何实现统一模型调度、热切换与成本管控。掌握这一模式,是迈向生产级 AI 工程的关键一步。
2026-01-17 15:09:11
752
原创 AI Agent开发第90课-LangChain 入门 (二)-Langchain如何和业务项目集成
本文深入探讨LangChain在真实业务系统中的集成方式,重点对比“内嵌式”与“独立服务”两种架构路径,从工程实践、可维护性、扩展性等维度分析为何业界普遍采用微服务化部署,并给出可落地的迁移建议与最佳实践。
2026-01-16 16:08:11
852
原创 AI Agent开发第89课-LangChain 入门 (一)-从玩具到工具
本文承接《初认Langchain,详细介绍Langchain是什么》,聚焦于一个可运行的入门 Demo。我们将搭建一个标准的项目结构,配置第三方大模型(如 Qwen),并展示核心组件(Model, Chain, Agent)的代码实现。这不仅是“Hello World”,更是迈向生产级应用的第一步。
2026-01-16 13:39:19
1403
原创 AI Agent开发第88课-初认Langchain,详细介绍Langchain是什么
LangChain 不是又一个“Hello World”玩具框架,而是为真实世界 LLM 应用提供组件化、可组合、可扩展的工程化解决方案。本文系统拆解其六大核心模块,揭示其如何解决数据连接、状态管理、工具调用等关键难题,并探讨其在开发者生态中的真正价值。
2026-01-15 21:35:24
930
原创 2026数据分析Agent最新落地方向解析
数据分析Agent正从“对话取数”迈向“自主决策”,其技术路线已形成NL2SQL、NL2DSL到NL2Data的演进路径。本文系统拆解其内核架构、工程落地难点与未来方向,指出真正的价值不在于取代分析师,而在于将数据消费门槛降至人人可及。前言
2026-01-15 08:30:57
688
原创 为什么説Agent不是AI,而是新型软件架构?
大模型只是“思考者”,Agent才是“行动者”。本文系统梳理Google官方Agent白皮书核心框架,从四要素构成、五级能力演进到企业级安全治理,揭示Agent本质是围绕上下文动态管理的新型软件架构范式,而非简单的AI聊天机器人。
2026-01-15 08:20:49
1218
原创 小模型“开卷”逆袭:RAG性能瓶颈不在LLM,而在语料库规模
卡内基梅隆大学最新研究颠覆传统认知——在RAG系统中,扩大检索语料库比升级大模型更有效。小模型配合海量文档,性能可反超大模型。关键不在模型“脑子多大”,而在“资料多全”。
2026-01-13 12:06:24
883
原创 ChatBI不是“智能副驾”,只是披着对话外衣的遥控器
ChatBI曾被吹捧为“用一句话取代报表”的革命性工具,但现实却暴露出其在输出可信度、价值锚点和实施成本上的三重幻灭。本文系统剖析其与商业决策本质的深层冲突,并指出真正可行的方向是“AI增强分析”——不是用聊天取代思考,而是用智能放大人类判断。
2026-01-12 19:51:52
887
原创 MCP成最大的赢家
MCP在一年内从一个脆弱草案演变为AI生态通用接口,其成功源于社区驱动、巨头共识、安全重构与企业治理四大支柱,正成为AI连接现实世界的“USB-C”。
2026-01-12 14:40:00
1017
原创 Claude Skills到底是什么?
Claude最近推出的Skills、MCP、Projects、Prompts四件套,看似概念繁杂,实则分别解决AI助手“不能动手”“缺记忆”“效率低”“接入乱”四大痛点。本文用技术人听得懂的语言,厘清它们的功能定位、层级关系与使用优先级,助你快速上手这套AI生产力新范式。
2026-01-11 01:37:37
621
原创 AI工程化:从“炼丹”到“建药厂”的60分钟通关指南
AI模型再聪明,不工程化就是玩具。本文系统拆解AI工程化的核心目标、关键技术与典型陷阱,带你理解如何将一个Notebook里的模型,变成高可靠、低延迟、低成本的线上服务。
2026-01-08 17:27:13
119
原创 AI Agent开发第87课-讲透知识图谱Neo4j在构建Agent时到底怎么用(二)
RAG 回答不准?因为缺少结构化逻辑。本文详解如何用 Neo4j 知识图谱为 Agent 提供确定性规则支撑,实现精准推理与冲突消解,让 AI 回答既聪明又可靠。
2026-01-08 16:37:56
848
原创 AI Agent开发第86课-讲透知识图谱Neo4j在构建Agent时到底怎么用(一)
本文深入剖析 Neo4j 如何作为 Agent 的“认知骨架”,并通过一个实际工程中的例子来说明知识图谱如何实现结构化推理,解决大模型在复杂规则与多跳关系下的幻觉与模糊问题。
2026-01-07 23:33:11
1418
原创 Agent 可靠性为何总是崩于细节?LangChain 创始人亲授系统性解法
Agent 从 Demo 走向生产,失败往往源于对“可靠性”的误解。本文基于 LangChain 创始人对 LangSmith 新功能的深度解读,系统拆解如何通过 Insights 与 Thread Evals 构建数据驱动的质量保障闭环,真正解决 Agent 在真实场景中的稳定性问题。
2026-01-07 15:40:02
609
原创 来看19.8k Star的谷歌开源复杂文档结构化信息抽取工具据説无需微调LLM即可精准提取
谷歌开源LangExtract,仅用自然语言指令与少量示例,即可从复杂长文档中精准提取可溯源的结构化信息。它通过原文定位、多轮分块、交互验证三大机制,有效抑制大模型幻觉,让信息抽取真正“有据可依”。
2026-01-07 15:31:13
656
原创 一起来围观46C6法提示词书写技巧是什么意思?
大多数提示词失效,并非因为模型能力不足,而是提问者忽略了结构化表达。46C6 提供了一套最小完备的提示工程框架——从任务四要素、六大优化策略、思维链显性推理,到 KERNEL 工程化原则,系统性解决“说不清、跑偏、不可复现”三大顽疾。
2026-01-06 21:51:28
1507
原创 慢思考,深搜索:MiroThinker 1.5 如何重塑 AI 研究智能体范式
MiroThinker 1.5 不追求“秒回”,而是以严谨的慢思考机制,在复杂问题上击败参数量更大的模型。本文解析其多轮主动搜索、交叉验证与长时推理能力,探讨它如何代表 AI 从聊天机器人向研究智能体的根本转型。
2026-01-06 20:01:41
989
原创 2026,多智能体不是噱头:企业AI从“工具人”走向“虚拟团队”
2026年将是多智能体在企业落地的关键元年。零一万物提出六大预判,指出AI将从“一人一工具”升级为“一人一团队”,通过角色分工、流程协同与业务闭环,真正嵌入组织主干。本文系统拆解多智能体为何不是过渡概念,而是当前最可行的企业AI路径。
2026-01-05 15:58:54
816
原创 mHC架构:用数学约束驯服超宽残差,大模型训练的新范式
DeepSeek最新论文提出mHC架构,通过将超连接投影到双随机矩阵流形上,一举解决梯度爆炸与显存墙问题。仅6.7%额外开销,即可实现训练稳定、性能提升与良好扩展性,为大模型宏观架构设计开辟新路径。
2026-01-04 23:45:11
1187
原创 AnyGen真能取代NotebookLM?别急,先看它到底解决了什么问题
AnyGen并非简单复刻NotebookLM,而是以“可交付成果”为核心,打通从碎片信息到可编辑办公产物的全链路。本文从五大典型场景出发,系统对比其与NotebookLM、豆包在内容生成、结构化处理及最终可用性上的差异,揭示AnyGen作为AI工作空间的独特定位。
2026-01-04 23:37:16
1169
原创 AI项目能不能稳定解决问题的8大关键工程能力
当你的AI Demo惊艳全场却上线崩盘,问题从来不在模型本身。真正决定AI能否稳定落地的,是围绕模型构建的一整套工程体系——从提示词设计到上下文管理,从RAG架构到智能体调度,再到部署、优化与可观测性。本文系统拆解支撑生产级AI应用的8大核心技能,告诉你如何把“会调Prompt”的手艺,转化为可复现、可评测、可迭代的稳定系统。
2025-12-15 15:46:42
865
原创 什么是RAG?什么是CAG?一文来搞清
RAG 解决了大模型“说错话”的问题,CAG 则让 AI 学会记住、理解并保持一致。本文系统剖析两者的技术差异、演进逻辑与未来方向,揭示 AI 如何从工具走向真正可信赖的智能伙伴。
2025-12-15 15:36:04
579
原创 RAG中的语义理解与语义检索:别再混为一谈
语义理解和语义检索在RAG中各司其职——前者是模型“读懂”问题的能力,后者是系统“找到”答案的手段。本文系统拆解二者原理、分工与协同逻辑,澄清常见误区。
2025-12-12 18:22:12
767
原创 大模型知道自己在瞎说,却停不下来背后的原理是什么?
大模型在长推理任务中常生成大量语义重复、逻辑空转的“词语沙拉”,虽能感知自身胡说却无法自主停止。最新研究通过监控隐藏状态识别冗余输出,并提出轻量干预策略,在不牺牲正确率的前提下显著提升效率。
2025-12-12 18:07:23
660
原创 智能体长期记忆的真正解法:不只是知识库,而是可演化的“第二大脑”
智能体长期记忆不能只靠RAG和向量库。MemMachine 提供了一套可自部署、支持记忆演化、兼容国产大模型的完整方案,通过 MCP 协议无缝接入 Claude 等主流 Agent,让 AI 真正“记得你、理解你、为你改变”。
2025-12-11 14:03:57
995
高杰的JBPM从入门到精通
2011-04-04
Experience J2EE! Using WebSphere Application Server V6.1
2011-04-04
原版精美通向架构师的道路第十四天至第十七天Word文档
2012-10-22
openssl for win
2012-08-10
通向架构师的道路(第二十七天)应用IBM网格计算提高批处理能力的sample工程
2013-01-15
通向架构师的道路(第二十五天)SSH的单元测试与dbunit的整合的例子
2012-12-03
SSH_Alpha工程人附属lib包
2012-10-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅