Algorithm P
Algorithm P (Print table of 500 primes). This algorithm has two distinct
parts: Steps P1-P8 prepare an internal table of 500 primes, and steps P9-P11
print the answer in the form shown above. The latter part of the program uses
two “buffers,” in which line images are formed; while one buffer is being printed,
the other is being filled.
P1. [Start table.] Set PRIME[1] <– 2, N <– 3, J <– 1. (In this program, N runs
through the odd numbers that are candidates for primes; J keeps track of
how many primes have been found so far.)
P2. [N is prime.] Set J <– J + 1, PRIME[J] <– N.
P3. [500 found?] If J = 500, go to step P9.
P4. [Advance N.] Set N <– N + 2.
P5. [K <– 2.] Set K <– 2. (PRIME[K] will run through the possible prime divisors
of N.)
P6. [PRIME[K] \N?] Divide N by PRIME[K]; let Q be the quotient and R the
remainder. If R = 0 (hence N is not prime), go to P4.
P7. [PRIME[K] large?] If Q <= PRIME[K], go to P2. (In such a case, N must
be prime; the proof of this fact is interesting and a little unusual – see
exercise 6.)
P8. [Advance K.] Increase K by 1, and go to P6.
P9. [Print title.] Now we are ready to print the table. Advance the printer
to the next page. Set BUFFER[0] to the title line and print this line. Set
B <– 1, M <– 1.
P10. [Set up line.] Put PRIME[M], PRIME[50 + M], …, PRIME[450 + M] into
BUFFER[B] in the proper format.
P11. [Print line.] Print BUFFER[B]; set B <– 1 - B (thereby switching to the
other buffer); and increase M by 1. If M <= 50, return to P10; otherwise the
algorithm terminates. |
Flow diagram
Java program
/**
* Created with IntelliJ IDEA.
* User: 1O1O
* Date: 12/17/13
* Time: 6:52 PM
* :)~
* Print table of 500 primes:ALGORITHMS
*/
public class Main {
public static void main(String[] args) {
int[] PRIME = new int[501];
PRIME[1] = 2;
int N=3;
int J=1;
/*Kernel of the Algorithm*/
do{
J++; /*P2*/
PRIME[J] = N;
if(J == 500){ /*P3*/
break;
}
do{
N+=2; /*P4*/
int K=2; /*P5*/
int Q, R; /*P6*/
do{
Q = N/PRIME[K];
R = N%PRIME[K];
if(R == 0){
break;
}
if(Q <= PRIME[K]){ /*P7*/
break;
}
K++; /*P8*/
}while (true);
if(R!=0 && Q <= PRIME[K]){
break;
}
}while (true);
}while (true);
/*Output the 500 PRIMES*/
System.out.println("FIRST FIVE HUNDRED PRIMES:");
System.out.print(" ");
for(int i=1; i<=10; i++){
System.out.print(String.format("%5s", i));
}
System.out.println();
System.out.println();
for(int M=1; M<=50; M++){
System.out.print(String.format("%3s", M+":"));
for(int j=0; j<500; j+=50){
System.out.print(String.format("%5s", PRIME[j+M]));
}
System.out.println();
}
}
}
Outputs
FIRST FIVE HUNDRED PRIMES:
1 2 3 4 5 6 7 8 9 10
1: 2 233 547 877 1229 1597 1993 2371 2749 3187
2: 3 239 557 881 1231 1601 1997 2377 2753 3191
3: 5 241 563 883 1237 1607 1999 2381 2767 3203
4: 7 251 569 887 1249 1609 2003 2383 2777 3209
5: 11 257 571 907 1259 1613 2011 2389 2789 3217
6: 13 263 577 911 1277 1619 2017 2393 2791 3221
7: 17 269 587 919 1279 1621 2027 2399 2797 3229
8: 19 271 593 929 1283 1627 2029 2411 2801 3251
9: 23 277 599 937 1289 1637 2039 2417 2803 3253
10: 29 281 601 941 1291 1657 2053 2423 2819 3257
11: 31 283 607 947 1297 1663 2063 2437 2833 3259
12: 37 293 613 953 1301 1667 2069 2441 2837 3271
13: 41 307 617 967 1303 1669 2081 2447 2843 3299
14: 43 311 619 971 1307 1693 2083 2459 2851 3301
15: 47 313 631 977 1319 1697 2087 2467 2857 3307
16: 53 317 641 983 1321 1699 2089 2473 2861 3313
17: 59 331 643 991 1327 1709 2099 2477 2879 3319
18: 61 337 647 997 1361 1721 2111 2503 2887 3323
19: 67 347 653 1009 1367 1723 2113 2521 2897 3329
20: 71 349 659 1013 1373 1733 2129 2531 2903 3331
21: 73 353 661 1019 1381 1741 2131 2539 2909 3343
22: 79 359 673 1021 1399 1747 2137 2543 2917 3347
23: 83 367 677 1031 1409 1753 2141 2549 2927 3359
24: 89 373 683 1033 1423 1759 2143 2551 2939 3361
25: 97 379 691 1039 1427 1777 2153 2557 2953 3371
26: 101 383 701 1049 1429 1783 2161 2579 2957 3373
27: 103 389 709 1051 1433 1787 2179 2591 2963 3389
28: 107 397 719 1061 1439 1789 2203 2593 2969 3391
29: 109 401 727 1063 1447 1801 2207 2609 2971 3407
30: 113 409 733 1069 1451 1811 2213 2617 2999 3413
31: 127 419 739 1087 1453 1823 2221 2621 3001 3433
32: 131 421 743 1091 1459 1831 2237 2633 3011 3449
33: 137 431 751 1093 1471 1847 2239 2647 3019 3457
34: 139 433 757 1097 1481 1861 2243 2657 3023 3461
35: 149 439 761 1103 1483 1867 2251 2659 3037 3463
36: 151 443 769 1109 1487 1871 2267 2663 3041 3467
37: 157 449 773 1117 1489 1873 2269 2671 3049 3469
38: 163 457 787 1123 1493 1877 2273 2677 3061 3491
39: 167 461 797 1129 1499 1879 2281 2683 3067 3499
40: 173 463 809 1151 1511 1889 2287 2687 3079 3511
41: 179 467 811 1153 1523 1901 2293 2689 3083 3517
42: 181 479 821 1163 1531 1907 2297 2693 3089 3527
43: 191 487 823 1171 1543 1913 2309 2699 3109 3529
44: 193 491 827 1181 1549 1931 2311 2707 3119 3533
45: 197 499 829 1187 1553 1933 2333 2711 3121 3539
46: 199 503 839 1193 1559 1949 2339 2713 3137 3541
47: 211 509 853 1201 1567 1951 2341 2719 3163 3547
48: 223 521 857 1213 1571 1973 2347 2729 3167 3557
49: 227 523 859 1217 1579 1979 2351 2731 3169 3559
50: 229 541 863 1223 1583 1987 2357 2741 3181 3571
Reference
<< The Art of Computer Programming: Fundamental Algorithms >> VOLUME 1, DONALD E. KNUTH