算法设计与分析: 5-21 2X2X2魔方问题

该博客探讨了2×2×2魔方问题,旨在设计一个算法以确定从初始状态到达每个面都为单一颜色的目标状态所需的最少旋转次数。文章介绍了问题描述,提供了Java实现,并详细说明了输入和输出格式。
摘要由CSDN通过智能技术生成

5-21 2X2X2魔方问题


问题描述

2×2×2 2 × 2 × 2 魔方的构造如图所示。图中英文字母 U,L,F,R,B,D 分别表示魔方的 6 个 面中的上面,左面,前面,右面,后面,底面。魔方的每个面都可以绕其中轴旋转。给定魔 方的初始状态,可以经过若干次旋转将魔方变换成每个面都只有一种颜色的状态。绕中轴将 一个面旋转 90 度算作一次旋转。试设计一个算法计算出从初始状态到目标状态(每个面都 只有一种颜色的状态)所需的最少旋转次数。

2x2x2魔方

设计一个算法,对于给定的 2×2×2 2 × 2 × 2 魔方的初始状态,计算从初始状态到目标状态(每个面都只有一种颜色的状态)所需的最少旋转次数。

数据输入:
2×2×2 2 × 2 × 2 魔方目标状态的每个面都有一种颜色,分别用大写英文字母 W,O,G,R,Y,B 来表示。将 6 个面展开并编号如下图所示。文件将给定魔 方的初始状态的 6 个面,按照其编号依次排列,共有 12 行,每行有 2 个表示方块颜色的大 写英文字母。

2x2x2魔方


Java

package Chapter5HuiSuFa;

import java.util.Arrays;
import java.util.Scanner;

public class MoFang2x2x2 {
   

    private static class cubeT{
   
        int[] cube = new int[8];
    }

    private static char[] lcols = {
  'U','U','U','U','L','L','L','L','F','F','F','F','R','R','R','R','B','B','B','B','D','D','D','D'};

    private static final int ID = 0;
    private static final int FACE_U_CW = 1;
    private static final int FACE_U_CCW = 2;
    private static final int FACE_U_180 = 3;
    private static final int FACE_L_CW = 4;
    private static final int FACE_L_CCW = 5;
    private static final int FACE_L_180 = 6;
    private static final int FACE_F_CW = 7;
    private static final int FACE_F_CCW = 8;
    private static final int FACE_F_180 = 9;
    private static final int CORNER_0_CW = 10;
    private static final int CORNER_0_CCW = 11;
    private static final int CORNER_2_CW = 12;
    
回溯法是解决魔方问题的一种常用法。以下是回溯法解决2x2x2魔方问题法思路和伪代码: 法思路: 1. 初始化魔方状态,包括每个小块的位置和颜色。 2. 从一个初始状态开始,一步步尝试各种可能的转动方法,直到找到一个合法的解或者尝试完所有可能的转动方法。 3. 在每一步转动后,检查当前状态是否符合要求,符合则继续下一步,否则撤销上一步转动,尝试下一种转动方法。 4. 当找到一个合法的解时,输出解的步骤数和具体的转动方法序列。 伪代码: 1. 初始化魔方状态 2. 定义一个数组,存储每个小块的位置和颜色 3. 定义一个变量,记录当前步骤数 4. 定义一个数组,存储所有可能的转动方法 5. 定义一个函数,检查当前状态是否符合要求 6. 定义一个函数,实现魔方的转动操作 7. 定义一个函数,实现回溯过程 8. 在回溯过程中,采用深度优先搜索的方式,尝试每一种可能的转动方法 9. 在每一步转动后,检查当前状态是否符合要求,符合则继续下一步,否则撤销上一步转动,尝试下一种转动方法 10. 当找到一个合法的解时,输出解的步骤数和具体的转动方法序列 11. 如果尝试完所有可能的转动方法,仍未找到合法解,则回溯到上一步状态,继续尝试其他可能的转动方法 以下是伪代码实现: ``` // 初始化魔方状态 状态初始化 // 定义一个数组,存储所有可能的转动方法 转动方法 = {F, F', F2, R, R', R2, U, U', U2} // 定义一个变量,记录当前步骤数 步骤数 = 0 // 定义一个函数,检查当前状态是否符合要求 函数 check_state() 如果魔方已还原,返回True 否则返回False // 定义一个函数,实现魔方的转动操作 函数 rotate(转动方法) 实现对应的转动操作 // 定义一个函数,实现回溯过程 函数 backtrace() 如果状态符合要求,输出解的步骤数和具体的转动方法序列,返回True 如果步骤数超过限制,返回False 遍历所有可能的转动方法 实现当前转动方法 步骤数加1 如果当前状态符合要求,继续下一步 否则回溯到上一步状态,尝试其他转动方法 返回False // 调用回溯函数 backtrace() ``` 以上是2x2x2魔方问题回溯法法思路和伪代码实现,需要根据实际情况进行具体的代码编写。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值