剑指 Offer 07. 重建二叉树

剑指 Offer 07. 重建二叉树

剑指 Offer 07. 重建二叉树
输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。

例如,给出
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]

返回如下的二叉树:

    3
   / \
  9  20
    /  \
   15   7

限制:
0 <= 节点个数 <= 5000


思路

前序遍历的第一个节点,肯定是根节点
然后,根据根节点,遍历中序数组,找到对应的值,找到其下标index
那么,中序遍历[inLeft, index - 1]为树的左子树
中序遍历[index + 1, inRight]为树的右子树

然后继续递归左子树,右子树

没做出来。。。


参考了这哥们的解法

我们只需要使用3个指针即可:
一个是preStart,他表示的是前序遍历开始的位置
一个是inStart,他表示的是中序遍历开始的位置,
一个是inEnd,他表示的是中序遍历结束的位置
我们主要是对中序遍历的数组进行拆解,只要找到了前序遍历的结点在中序遍历的位置,我们就可以把中序遍历数组分解为两部分了。
如果index是前序遍历的某个值在中序遍历数组中的索引,以index为根节点划分的话,那么:

第一个根节点为3,在中序遍历3的index=1

中序遍历中[0,index-1]就是根节点左子树的所有节点,
[index+1,inorder.length-1]就是根节点右子树的所有节点。

中序遍历好划分,那么前序遍历呢?
如果是左子树:preStart=preStart+1;

preStart后面一个

如果是右子树就稍微麻烦点:
preStart = preStart+(index-instart+1);

preStart是当前节点比如m先序遍历开始的位置,index-instart+1就是当前节点m左子树的数量加上当前节点的数量,所以preStart+(index-instart+1)就是当前节点m右子树前序遍历开始的位置,我们来看下完整代码

public TreeNode buildTree(int[] preorder, int[] inorder) {
    return helper(0, 0, inorder.length - 1, preorder, inorder);
}

public TreeNode helper(int preStart, int inStart, int inEnd, int[] preorder, int[] inorder) {
    if (preStart > preorder.length - 1 || inStart > inEnd) {
        return null;
    }
    //创建结点
    TreeNode root = new TreeNode(preorder[preStart]);
    int index = 0;
    //找到当前节点root在中序遍历中的位置,然后再把数组分两半
    for (int i = inStart; i <= inEnd; i++) {
        if (inorder[i] == root.val) {
            index = i;
            break;
        }
    }
    root.left = helper(preStart + 1, inStart, index - 1, preorder, inorder);
    root.right = helper(preStart + index - inStart + 1, index + 1, inEnd, preorder, inorder);
    return root;
}


这哥们还找出了前序遍历的部分

前序遍历的左子树为[preLeft, N]
前序遍历的右子树为[N, preRight]

N = preLeft + (index - inLeft + 1)

在这哥们的思路下,完善了自己的代码:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        //边界条件
        if(preorder == null || inorder == null) return null;
        if(preorder.length == 0 || inorder.length == 0) return null;
        if(preorder.length != preorder.length) return null;

        return buildTree(preorder, inorder, 0, 0, preorder.length - 1);
    }

    public TreeNode buildTree(int[] preorder, int[] inorder, int preLeft, int inLeft, int inRight) {
        //preLeft一直在加,最大不能超过preorder.length - 1
        //inLeft也在加 inLeft < inorder.length - 1;
        //inRight在减 inRight > 0;
        if(preLeft > preorder.length - 1 || inLeft > inorder.length - 1 || inRight < 0 || inLeft > inRight){
            return null;
        }

        TreeNode root = new TreeNode();
        root.val = preorder[preLeft];

        int midIndex = 0;
        for(int i = inLeft; i <= inRight; i++){
            if(root.val == inorder[i])
            {
                midIndex = i;
                break;
            }
        }
        
        root.left = buildTree(preorder, inorder, preLeft + 1, inLeft, midIndex - 1);
        root.right = buildTree(preorder, inorder, preLeft + (midIndex - inLeft + 1), midIndex + 1, inRight);
        return root;
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值