1、题目描述
https://leetcode-cn.com/problems/increasing-subsequences/
给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。
输入: [4, 6, 7, 7]
输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]
- 给定数组的长度不会超过15。
- 数组中的整数范围是 [-100,100]。
- 给定数组中可能包含重复数字,相等的数字应该被视为递增的一种情况。
2、代码详解
回溯,也可以称为DFS+哈希set
下面两种写法,思路是一致的
class Solution(object):
def findSubsequences(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
# 全局变量
ans = [] # 保存所有递增子序列
n = len(nums)
# tmp保存当前递增子序列
def dfs(index, tmp):
# 如果当前递增子序列符合要求:ans增加tmp
if len(tmp) > 1: # 只要当前的递增序列长度大于 1
# 必须写成list(tmp)
ans.append(list(tmp)) # 就加入到结果 ans 中,然后继续搜索递增序列的下一个值
# 在 [index + 1, len(nums) - 1] 范围内遍历搜索递增序列的下一个值。
# 借助 set 对 [index + 1, len(nums) - 1] 范围内的数去重。
readySet = set() # 定义集合保存状态,避免重复
for j in range(index+1, n):
# 1. 如果 set 中已经有与 nums[i] 相同的值了,
# 说明加上 nums[i] 后的所有可能的递增序列之前已经被搜过一遍了,因此停止继续搜索
if nums[j] in readySet:
continue
readySet.add(nums[j])
# 2. 如果 nums[i] >= nums[idx] 的话,说明出现了新的递增序列,
# 因此继续 dfs 搜索(因为 curList 在这里是复用的,别忘了 remove)
if index == -1 or nums[j] >= nums[index]:
tmp.append(nums[j])
dfs(j, tmp)
tmp.pop()
dfs(-1, []) # idx 初始化为 -1,开始 dfs 搜索
return ans
class Solution(object):
def findSubsequences(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
ans = [] # 保存所有递增子序列
# tmp保存当前递增子序列
def dfs(nums, tmp):
# 如果当前递增子序列符合要求:ans增加tmp
if len(tmp) > 1: # 只要当前的递增序列长度大于 1
ans.append(tmp) # 就加入到结果 ans 中,然后继续搜索递增序列的下一个值
# 在 [index + 1, len(nums) - 1] 范围内遍历搜索递增序列的下一个值。
# 借助 set 对 [index + 1, len(nums) - 1] 范围内的数去重。
readySet = set() # 定义集合保存状态,避免重复
for index, value in enumerate(nums):
# 如果 set 中已经有与 nums[i] 相同的值了,
# 说明加上 nums[index] 后的所有可能的递增序列之前已经被搜过一遍了,因此停止继续搜索
if value in readySet: # 如果当前值在以前已被遍历
continue # 跳出当前循环,开始下一次循环
if not tmp or value >= tmp[-1]: # 如果value加入tmp可以形成递增子序列
readySet.add(value) # value加入集合
# print('index:', index, 'value:', value, 'readySet:', readySet, 'tmp:', tmp, 'ans:', ans)
dfs(nums[index+1:], tmp + [value])
dfs(nums, [])
return ans