1.任务描述
达观杯是一个长文本分类问题,文本的长度非常长,最长的句子超过1w个词,一般任务也就300词。
文本进行过脱敏处理,任务目标是判断文本数据属于什么类别,类别总共有19种。比如给你一段新闻文章,判断文章属于经济、政治还是娱乐或者其他的类别。横坐标是种类名称(脱敏的),纵坐标是对应的语料数量。
建立模型通过长文本数据正文(article),预测文本对应的类别(class)。
传统监督学习模型文本分类的基本过程
2.数据集
数据集都是脱敏的
①训练集
train_set.csv:此数据集用于训练模型,每一行对应一篇文章。文章分别在“字”和“词”的级别上做了脱敏处理。共有四列: 第一列是文章的索引(id),第二列是文章正文在“字”级别上的表示,即字符相隔正文(article);第三列是在“词”级别上的表示,即词语相隔正文(word_seg);第四列是这篇文章的标注(class)。
注:每一个数字对应一个“字”,或“词”,或“标点符号”。“字”的编号与“词”的编号是独立的!
②测试集
test_set.csv:此数据用于测试。数据格式同train_set.csv,但不包含class标签。
注:test_set与train_test中文章id的编号是独立的。
3.评分标准
评分算法:binary-classification
采用各个品类F1指标的算术平均值,它是Precision 和 Recall 的调和平均数。
其中,Pi是表示第i个种类对应的Precision, Ri是表示第i个种类对应Recall。
拓展:
https://blog.csdn.net/weixin_42662262/article/details/89044804