1、匿名函数基础
匿名函数的格式:关键字 lambda,之后是一系列的参数,然后用冒号隔开,最后则是由这些参数组成的表达式。
lambda argument1, argument2,... argumentN : expression
1.1 案例:x的平方
# 匿名函数的形式
square = lambda x: x**2
square(3)
9
# 常规函数的形式
def square(x):
return x**2
square(3)
9
匿名函数 lambda 和常规函数一样,返回的都是一个函数对象(function object),它们的用法也极其相似,不过还是有下面几点区别。
1.2 两者区别
第一,lambda 是一个表达式(expression),并不是一个语句(statement)。
- 所谓的表达式,就是用一系列“公式”去表达一个东西,比如x + 2、 x**2等等。
- 而所谓的语句,则一定是完成了某些功能,比如赋值语句x = 1完成了赋值,print 语句print(x)完成了打印,条件语句 if x < 0:完成了选择功能等等。
- lambda 可以用在一些常规函数 def 不能用的地方,比如,lambda 可以用在列表内部,而常规函数却不能。
# lambda 可以用在一些常规函数 def 不能用的地方
# 比如,lambda 可以用在列表内部,而常规函数却不能
[(lambda x: x*x)(x) for x in range(10)]
# 输出
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
- lambda 可以被用作某些函数的参数,而常规函数 def 也不能。常规函数 def 必须通过其函数名被调用,因此必须首先被定义。但是作为一个表达式的 lambda,返回的函数对象就不需要名字了。
l = [(1, 20), (3, 0), (9, 10), (2, -1)]
l.sort(key=lambda x: x[1]) # 按列表中元祖的第二个元素排序
print(l)
# 输出
[(2, -1), (3, 0), (9, 10), (1, 20)]
第二,lambda 的主体是只有一行的简单表达式,并不能扩展成一个多行的代码块。
- 这其实是出于设计的考虑。Python 之所以发明 lambda,就是为了让它和常规函数各司其职:lambda 专注于简单的任务,而常规函数则负责更复杂的多行逻辑。
2、匿名函数好处
Python 中的匿名函数 lambda,它的主要用途是减少代码的复杂度。需要注意的是 lambda 是一个表达式,并不是一个语句;它只能写成一行的表达形式,语法上并不支持多行。
匿名函数通常的使用场景是:程序中需要使用一个函数完成一个简单的功能,并且该函数只调用一次。
案例:对一个列表中的所有元素做平方
# lambda 函数
squared = map(lambda x: x**2, [1, 2, 3, 4, 5])
# 常规函数
def square(x):
return x**2
squared = map(square, [1, 2, 3, 4, 5])
函数 map(function, iterable) 的第一个参数是函数对象,第二个参数是一个可以遍历的集合,它表示对 iterable 的每一个元素,都运用 function 这个函数。两者一对比,很明显,lambda 函数让代码更加简洁明了。
3、函数式编程
Python 的函数式编程,了解常见的 map(),fiilter() 和 reduce() 三个函数,比较了它们与其他形式(for 循环,comprehension)的性能,显然,它们的性能效率是最优的。
3.1 纯函数和不可变
Python 的函数式编程特性,这与匿名函数 lambda 有着密切的联系。
所谓函数式编程,是指代码中每一块都是不可变的(immutable),都由纯函数(pure function)的形式组成。这里的纯函数,是指函数本身相互独立、互不影响,对于相同的输入,总会有相同的输出,没有任何副作用。
案例:让列表中的元素值都变为原来的两倍
def multiply_2(l):
for index in range(0, len(l)):
l[index] *= 2
return l
def multiply_2_pure(l):
new_list = []
for item in l:
new_list.append(item * 2)
return new_list
第一段代码就不是一个纯函数的形式,因为列表中元素的值被改变了,如果我多次调用 multiply_2() 这个函数,那么每次得到的结果都不一样。要想让它成为一个纯函数的形式,就得写成第二段代码这种形式,重新创建一个新的列表并返回。
函数式编程的优点,主要在于其纯函数和不可变的特性使程序更加健壮,易于调试(debug)和测试;
缺点主要在于限制多,难写。当然Python 不同于一些语言(比如 Scala),它并不是一门函数式编程语言,不过,Python 也提供了一些函数式编程的特性,值得了解和学习。
3.2 map()、filter() 和 reduce()
① map()
map(function, iterable) 函数,表示 对 iterable 中的每个元素,都运用 function 这个函数,最后返回一个新的可遍历的集合。
案例:对列表中的每个元素乘以 2,用 map 表示为下面这样:
l = [1, 2, 3, 4, 5]
new_list = map(lambda x: x * 2, l) # [2, 4, 6, 8, 10]
案例:以 map() 函数为例,看一下 Python 提供的函数式编程接口的性能。还是同样的列表例子,它还可以用 for 循环和 list comprehension(目前没有统一中文叫法,可以直译为列表理解等)实现,我们来比较一下它们的速度:
python3 -mtimeit -s'xs=range(1000000)' 'map(lambda x: x*2, xs)'
2000000 loops, best of 5: 171 nsec per loop
python3 -mtimeit -s'xs=range(1000000)' '[x * 2 for x in xs]'
5 loops, best of 5: 62.9 msec per loop
python3 -mtimeit -s'xs=range(1000000)' 'l = []' 'for i in xs: l.append(i * 2)'
5 loops, best of 5: 92.7 msec per loop
可见map() 是最快的。因为 map() 函数直接由 C 语言写的,运行时不需要通过 Python 解释器间接调用,并且内部做了诸多优化,所以运行速度最快。
② filter()
filter(function, iterable) 函数,和 map 函数类似,function 同样表示一个函数对象。
filter() 函数表示 对 iterable 中的每个元素,都使用 function 判断,并返回 True 或者 False,最后将返回 True 的元素组成一个新的可遍历的集合。
案例:返回一个列表中的所有偶数
l = [1, 2, 3, 4, 5]
new_list = filter(lambda x: x % 2 == 0, l) # [2, 4]
③ reduce()
reduce(function, iterable) 函数,通常用来对一个集合做一些累积操作。function 同样是一个函数对象,规定它有两个参数。
表示对 iterable 中的每个元素以及上一次调用后的结果,运用 function 进行计算,所以最后返回的是一个单独的数值。
案例:计算某个列表元素的乘积,用 reduce() 函数来表示
l = [1, 2, 3, 4, 5]
product = reduce(lambda x, y: x * y, l) # 1*2*3*4*5 = 120
当然,类似的,filter() 和 reduce() 的功能,也可以用 for 循环或者 list comprehension 来实现。
3.3 小结:“map()、filter()、reduce() ” 、 “list comprehension ”、 “for”
通常来说,在我们想对集合中的元素进行一些操作时,如果操作非常简单,比如相加、累积这种,应优先考虑 map()、filter()、reduce() 这类或者 list comprehension 的形式。至于这两种方式的选择:
- 在数据量非常多的情况下,比如机器学习的应用,那我们一般更倾向于函数式编程的表示,因为效率更高;
- 在数据量不多的情况下,并且你想要程序更加 Pythonic 的话,那么 list comprehension 也不失为一个好选择。
不过,如果你要对集合中的元素,做一些比较复杂的操作,那么,考虑到代码的可读性,我们通常会使用 for 循环,这样更加清晰明了。
4、匿名函数的实际使用场景
4.1 案例:对一个字典,根据值进行由高到底的排序
d = {'mike': 10, 'lucy': 2, 'ben': 30}
sorted(d.items(), key = lambda x: x[1], reverse = True)
其中,Python 字典(Dictionary) items() 函数以列表返回可遍历的(键, 值) 元组数组。Python 字典(Dictionary) items()方法
4.2 匿名函数的使用场景
最开始接触 lambda 匿名函数的时候觉得蛮不理解的,觉得这个函数没有灵魂,用完一次就扔掉。
后来在和高阶函数、列表生成式搭配使用以及一些小功能的使用上觉得很好用,这样代码即简洁又易于阅读。
注:匿名函数最难理解的地方就是要传入的参数是一个可迭代的对象,lambda 内部会调用可迭代对象的 __next__ 方法取值当作参数传入 lambda 函数冒号前面的值,然后把表达式计算的结果进行返回。
参考文献: