F Planting Trees
题意:t组数据,有一个n*n的矩阵,一个合法的矩形满足矩形内最大元素-最小元素<=m,求满足条件的矩形的最大面积。
数据范围:It is guaranteed that the sum of N^3 over all cases does not exceed 25⋅10^7
题解: .枚举矩形上下右边界,此时复杂度为O(n ^ 3),现在问题就变成如何确定左边界,可以处理出每一列的最大值最小值(这个处理过程要充分重用之前数据–>上下边界为[U,D]到[U,D+1]的转移过程可以使用[U,D]的每一列的最大值mx和最小值mn,mx=max(mx,a[i][D+1]),mn=min(mn,a[i][D+1])),如果使用线段树之类的数据结构可以O(logn)得到左边界,会超时,而利用单调队列可以优化至n^3。
现在重点就是单调队列维护哪些信息以及怎么维护。
单调队列显然维护的是左右区间[L,R]的列最大值和最小值,由单调队列的性质知道应该维护最大值的队列元素应该是递减的,维护最大值的队列元素应该是递增的。
现在就剩下怎么维护的问题,维护分为插入队尾和移动队首两个步骤。
(1)插入队尾时,对于维护最大值的队列,假设队尾为x,当前元素为y,如果y<x,那么显然直接插入即可(因为要维护一个递减的队列嘛),可如果y>=x呢,因为单调队列维护的最大值队列是指区间[i,j]的最大值(其中j是当前元素的下标),所以如果y>=x,那么直接弹出x然后插入y即可,同理可得最小值队列的插入队尾操作。
(2)移动队首的操作,由于要求最大值队列的队首x减去最小值队列的队首y<=m,所以如果最大值队列的队首x减去最小值队列的队首y>m就要移动队首,但是由于是两个队列,所以需要贪心地进行选择,很容易想到贪心的策略
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define debug(x) cout<<#x<<" is "<<x<<endl;
const int maxn=5e2+5;
const ll inf=1e15;
ll a[maxn][maxn],c[maxn][maxn][2],q1[maxn],q2[maxn],ac[maxn],ac2[maxn];
int main(){
int t;
// freopen("D:\\acm\\ac\\in.txt","r",stdin);
scanf("%d",&t);
while(t--){
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
scanf("%lld",&a[i][j]);
c[i][j][0]=-inf;
c[i][j][1]=inf;
}
}
ll ans=0;
for(int i=1;i<=n;i++){
for(int j=i;j<=n;j++){
int head1=1;
int tail1=0;
int head2=1;
int tail2=0;
ll ak=1;
for(int k=1;k<=n;k++){
c[i][k][0]=max(c[i][k][0],a[j][k]);
c[i][k][1]=min(c[i][k][1],a[j][k]);
ll a1=c[i][k][0];
ll a2=c[i][k][1];
while(head2<=tail2&&(a1>q2[tail2]))tail2--;
while(head1<=tail1&&(a2<q1[tail1]))tail1--;
q1[++tail1]=a2;
q2[++tail2]=a1;
ac[tail1]=k;
ac2[tail2]=k;
if((j-i+1)*n<=ans)continue;
int f=0;
while(head2<=tail2&&head1<=tail1&&q2[head2]-q1[head1]>m){
if(head1<tail1&&(head2>=tail2||ac[head1]<=ac2[head2])){
ak=max(ac[head1]+1,ak);
head1++;
}
else if(head2<tail2&&(head1>=tail1||ac[head1]>=ac2[head2])){
ak=max(ak,ac2[head2]+1);
head2++;
}
else{
f=1;
break;
}
}
if(f)continue;
if(k>=ak)ans=max(ans,(ll)(j-i+1)*(k-ak+1));
}
}
}
printf("%d\n",ans);
}
return 0;
}