牛顿插值法和拉格朗日插值法C++实现

拉格朗日插值法:

#include <iostream>  
#include <string>  
#include <vector>  
using namespace std;
 
 
void Lagrange(int N, int N1, vector<double>&X, vector<double>&Y, vector<double>&xp, vector<double> &result);
int main()
{
	char a = 'n';
	do{
	cout << "请输入所需插值点N的值:" << endl;
	int N;
	int N1;
	cin >> N;
	vector<double>X(N, 0);
	vector<double>Y(N, 0);
	cout << "请输入"<<N<<"个插值点对应的值X[i]:" << endl;
	for (int a = 0; a<N; a++)
	   {
		cin >> X[a];
		if (a >= N)
		break;
	   }
	cout << "请输入" << N << "个插值点对应的函数值Y[i]:" << endl;
	for (int a = 0; a<N; a++)
	   {
		cin >> Y[a];
		if (a >= N)
		break;
	   }
	cout << "请输入所求xp次数N1的值:" << endl;
	cin >> N1;
	vector<double>xp(N1, 0);
	vector<double> result(N1, 0);
	cout << "请输入" << N1 << "个所求向量xp[i]的值:" << endl;
	for (int a = 0; a<N1; a++)
	  {
		cin >> xp[a];
		if (a >= N1)
		break;
	  }
	Lagrange(N, N1, X, Y, xp, result);
	for (int a = 0; a < N1; a++)
	  {
		cout << result[a] << endl;
	  }
	cout << "是否要继续?(y/n):";
	cin >> a;
	  } while (a == 'y');
	return 0;
}
 
 
void Lagrange(int N, int N1,vector<double>&X, vector<double>&Y, vector<double>&xp, vector<double> &result)
{
	double temp1=0;
	for (int h = 0; h < N1; h++)
	   {
		for (int i = 0; i < N; i++)
		    {
			double temp = Y[i];
			for (int j = 0; j < N; j++)
	                    {
				if (i != j)
				 {
					temp = temp*(xp[h] - X[j]);
					temp = temp/(X[i] - X[j]);
				 }
			     }
			temp1 += temp;
		    }
		result[h] = temp1;
		temp1 = 0 ;
	   }
}

牛顿插值法:

#include<iostream>  
#include<string>  
#include<vector>  
using namespace std;
 
double ChaShang(int n, vector<double>&X, vector<double>&Y);
void Newton(int n1, vector<double>& xp, vector<double>&X, vector<double>&Y, vector<double> &result);
 
int main()
{
	char a = 'n';
	do
	{int n,n1;
	cout << "请输入插值点的个数" << endl;
	cin >> n;
	vector<double>X(n, 0);
	vector<double>Y(n, 0);
	
	cout << "请输入插值点X[i]的值" << endl;
	for (int i = 0; i<n; i++)
	{
		cin >> X[i] ;
	}
	cout << "请输入插值点Y[i]的值" << endl;
	for (int i = 0; i<n; i++)
	{
		cin >> Y[i];
	}
	cout << "请输入所求点的个数" << endl;
	cin >> n1;
	vector<double> xp(n1, 0);
	vector<double> result(n1, 0);
	cout << "请输入所求插值点xp[i]的值:" << endl;
	for (int i = 0; i<n1; i++)
	{
		cin >> xp[i];
	}
	Newton(n1,xp, X, Y,result);
	cout << "输出所求插值点的函数值:" << endl;
	for (int h = 0; h < n1; h++)
	{
		cout<< result[h]<<endl;
	}
	cout << "是否要继续?(y/n):";
	cin >> a;
	} while (a == 'y');
	return 0;
}
 
double ChaShang(int n, vector<double>&X, vector<double>&Y)
{
	double f = 0;
	double temp = 0;
	for (int i = 0; i<n + 1; i++)
	{
		temp = Y[i];
		for (int j = 0; j<n + 1; j++)
			if (i != j) temp /= (X[i] - X[j]);
		f += temp;
	}
	return f;
}
 
void Newton(int n1, vector<double>& xp, vector<double>&X, vector<double> &Y, vector<double> &result)
{
	double temp1 = 0;
	for (int h = 0; h < n1; h++)
	{
		for (int i = 0; i < X.size(); i++)
		{
			double temp = 1;
			double f = ChaShang(i, X, Y);
			for (int j = 0; j < i; j++)
			{
				temp = temp*(xp[h] - X[j]);
			}
			temp1 += f*temp;
		}
		result[h] = temp1;
		temp1 = 0;
	}
}

以上代码转自:https://blog.csdn.net/qq_32171677/article/details/60955759

我的需求,根据已有的速度,预估下一次的速度。预估的个数为1个,一维数据坐标为1,2,3...

改进:

/*
 * @Description: 
 * @Version: 2.0
 * @Author: Feng Chao
 * @Date: 2020-10-16 09:18:53
 * @LastEditors: Feng Chao
 * @LastEditTime: 2020-10-16 12:00:45
 */

#include "../common.h"

float fore_cast(vector<float>data);

int main()
{
    vector<float>data;
    data.push_back(1.1);
    data.push_back(1.3);
    data.push_back(1.6);
    data.push_back(2.0);

    printf("result:%f\n",fore_cast(data));
    
}

float fore_cast(vector<float>data)
{
    float result = 0;
    for(int i = 0;i<data.size();i++)
    {
        double temp = 1;
        double f = 0;
        double temp2 = 0;
        for (int j = 0; j < i + 1; ++j) 
        {
            temp2 = data[j];
            for(int k = 0; k < i + 1; ++k)
            {
                if(j != k)
                {
                    temp2 /= (j - k); 
                }   
            }
            f += temp2;
        }
        for(int m = 0; m < i;++m)
        {
            temp = temp*(data.size() - m);
        }
        result += f*temp;
    }
   return result;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值