NIO和BIO

 

BIO

同步阻塞式IO,服务器实现模式:为一个连接建立一个线程,即客户端有连接请求时,服务器端就需要启动一个线程进行处理,这个线程和这个连接就捆绑到了一起,线程就等着连接做事情;如果这个连接不做任何事情,会造成不必要的线程开销,当然可以通过线程池机制改善。

在这里插入图片描述

NIO

同步非阻塞式IO,服务器实现模式:为一个请求建立一个线程,即客户端发送的连接都会注册到多路复用器(Selector)上,并基于事件驱动模式,即当多路复用器论询到连接中有事件发生时,才启动一个线程进行处理;事件包括连接请求事件、读取数据事件、发送数据事件等。

在这里插入图片描述

同步非阻塞式IO关键采用了事件驱动的思想来实现一个多路转换器

NIO BIO区别
NIO和BIO最大的区别就是只需要开启一个线程就可以处理来自多个客户端的IO事件。

NIO原理
1.建立连接:若服务端监听到客户端的连接请求,便为其建立通信套接字(java中就是通道(Channel),然后返回继续监听,若同时有多个客户端连接请求到来也可以全部接收,依次为它们建立通信套接字
2.处理数据:若服务端监听到来自已经创建了通信套接字的客户端发来的数据,就会调用对应的接口处理接收到的数据,若同时有多个客户端发来数据也可以依次进行处理
3.同时监听:监听多个客户端的连接请求和接收数据请求的同时,还能监听自己有数据发送 。

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
图像识别技术在病虫害检测中的应用是一个快速发展的领域,它结合了计算机视觉和机器学习算法来自动识别和分类植物上的病虫害。以下是这一技术的一些关键步骤和组成部分: 1. **数据收集**:首先需要收集大量的植物图像数据,这些数据包括健康植物的图像以及受不同病虫害影响的植物图像。 2. **图像预处理**:对收集到的图像进行处理,以提高后续分析的准确性。这可能包括调整亮度、对比度、去噪、裁剪、缩放等。 3. **特征提取**:从图像中提取有助于识别病虫害的特征。这些特征可能包括颜色、纹理、形状、边缘等。 4. **模型训练**:使用机器学习算法(如支持向量机、随机森林、卷积神经网络等)来训练模型。训练过程中,算法会学习如何根据提取的特征来识别不同的病虫害。 5. **模型验证和测试**:在独立的测试集上验证模型的性能,以确保其准确性和泛化能力。 6. **部署和应用**:将训练好的模型部署到实际的病虫害检测系统中,可以是移动应用、网页服务或集成到智能农业设备中。 7. **实时监测**:在实际应用中,系统可以实时接收植物图像,并快速给出病虫害的检测结果。 8. **持续学习**:随着时间的推移,系统可以不断学习新的病虫害样本,以提高其识别能力。 9. **用户界面**:为了方便用户使用,通常会有一个用户友好的界面,显示检测结果,并提供进一步的指导或建议。 这项技术的优势在于它可以快速、准确地识别出病虫害,甚至在早期阶段就能发现问题,从而及时采取措施。此外,它还可以减少对化学农药的依赖,支持可持续农业发展。随着技术的不断进步,图像识别在病虫害检测中的应用将越来越广泛。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值