题目:
传送带上的包裹必须在 D 天内从一个港口运送到另一个港口。
传送带上的第 i 个包裹的重量为 weights[i]。每一天,我们都会按给出重量的顺序往传送带上装载包裹。我们装载的重量不会超过船的最大运载重量。
返回能在 D 天内将传送带上的所有包裹送达的船的最低运载能力。
示例 1:
输入:weights = [1,2,3,4,5,6,7,8,9,10], D = 5
输出:15
解释:
船舶最低载重 15 就能够在 5 天内送达所有包裹,如下所示:
第 1 天:1, 2, 3, 4, 5
第 2 天:6, 7
第 3 天:8
第 4 天:9
第 5 天:10
请注意,货物必须按照给定的顺序装运,因此使用载重能力为 14 的船舶并将包装分成 (2, 3, 4, 5), (1, 6, 7), (8), (9), (10) 是不允许的。
示例 2:
输入:weights = [3,2,2,4,1,4], D = 3
输出:6
解释:
船舶最低载重 6 就能够在 3 天内送达所有包裹,如下所示:
第 1 天:3, 2
第 2 天:2, 4
第 3 天:1, 4
示例 3:
输入:weights = [1,2,3,1,1], D = 4
输出:3
解释:
第 1 天:1
第 2 天:2
第 3 天:3
第 4 天:1, 1
思路:首先确定本题用什么算法,题意是想要获得能在规定的D天之内运送走所有货物的最小的船运力,也就是说我们可以理解为存在这样一个边界Boundary;同时会有两种情况产生:
1.当运力小于Boundary的时候,不能在D天内运走所有的货物。
2.当运力大于等于Boundary的时候,能在D天内运走所有的货物;
同时,我们可以知道这个Boundary的值就是我们所需要的答案。
然后,可以使用二分查找的方法;首先确定二分算法的左右边界,在本题中,由于包裹不能被拆分,因此,最小的运力大小应该大于等于某个最大重量的包裹,也就是说:
二分的最小边界(左边界)为: