生成式AI应用实列
ChatGPT
ChatGPT 并不是生成式 AI 行业中唯一的公司。 Stability AI 的 Stable Diffusion 可以根据文本描述生成图像,发布后 90 天内,在 GitHub 上获得了超过 30,000 颗星,比之前任何软件包快了八倍。
这种兴奋不只是组织的尝试。生成式人工智能用例已经在各个行业中广泛应用。金融服务巨头摩根士丹利正在测试该技术,以帮助其财务顾问更好地利用该公司超过 100,000 份研究报告中的见解。Salesforce 已将技术融入其广受欢迎的客户关系管理 (CRM) 平台。
生成式人工智能技术的飞速发展和新用例的不断涌入市场,让投资者和企业领导者争先恐后地了解生成式人工智能生态系统。虽然,即将深入探讨 CEO 战略以及该技术可能在全球各行业创造的潜在经济价值,但我们在这里分享一下生成式人工智能价值链的构成。我们的目标是提供基本的理解,作为评估这个快节奏领域的投资机会的起点。我们的评估基于初级和二级研究,包括对致力于技术商业化的企业创始人、首席执行官、首席科学家和企业领导人的 30 多次采访;数百份市场报告和文章;以及麦肯锡专有的研究数据。
Gemini
Gemini,原名 Bard,是谷歌开发的生成式人工智能聊天机器人。它基于同名的大语言模型 (LLM),是为了直接响应 OpenAI 的 ChatGPT 的迅速崛起而开发的,它于 2023 年 3 月以有限的容量推出,然后于 5 月扩展到其他国家。它之前基于 PaLM,最初基于大型语言模型 LaMDA 系列。
LaMDA 已于 2021 年开发并公布,但出于谨慎考虑并未向公众发布。 OpenAI 于 2022 年 11 月推出的 ChatGPT 及其随后的受欢迎程度让谷歌高管措手不及,陷入恐慌,并在接下来的几个月里引发了广泛的反应。在动员员工后,该公司于 2023 年 2 月推出了 Bard,该项目在 5 月的 2023 年 Google I/O 主题演讲中成为焦点,并于 12 月升级为 Gemini LLM。 Bard 和 Duet AI 于 2024 年 2 月统一在 Gemini 品牌下,同时推出 Android 应用程序,该应用程序将取代 Google Assistant 成为 Android 上的主要虚拟助手,但 Google Assistant 将保留为可选助手。
双子座收到的反应冷淡。 2024 年 2 月,它成为争议的中心,当时社交媒体用户报告说,它生成了历史上不准确的有色人种历史人物图像,保守派评论员谴责其所谓的偏见是“觉醒”。
GitHub Copilot
GitHub Copilot 是由 GitHub 和 OpenAI 开发的代码补全工具,通过自动补全代码来帮助 Visual Studio Code、Visual Studio、Neovim 和 JetBrains 集成开发环境 (IDE) 的用户。 该生成式人工智能软件目前可通过订阅向个人开发者和企业提供,该软件于 2021 年 6 月 29 日首次由 GitHub 发布,最适合使用 Python、JavaScript、TypeScript、Ruby 和 Go 进行编码的用户。2023 年 3 月,GitHub 宣布了“Copilot X”计划,该计划将基于 GPT-4 的聊天机器人和对语音命令的支持,集成到 Copilot 中。
Synthesia
Synthesia 最常被公司用于沟通、指导和培训视频。它已用于广告活动、报告、产品演示以及创建聊天机器人。该公司的用户企业包括亚马逊、蒂芙尼公司和洲际酒店集团酒店及度假村。
Synthesia 的软件算法根据个人语音和音素发音的视频记录来模仿语音和面部动作。由此创建一个文本到语音的视频,使其看起来和听起来像个人。
用户通过平台预先生成的 AI 演示者或使用平台的 AI 生成工具创建自己的数字表示(称为人工现实身份 (ARI))来创建内容。这些头像可用于叙述从文本生成的视频。截至 2021 年 8 月,Synthesia 的语音数据库包含 60 多种语言的多种性别选项。
该平台限制其软件用于重现名人或政治人物以达到讽刺目的。 除了严格的预筛选方案之外,还必须获得明确同意才能使用个人肖像以避免“深度伪造”。
价值链
随着生成式人工智能系统的开发和部署的开始,一个新的价值链正在出现,以支持这项强大技术的培训和使用。乍一看,人们可能会认为它与传统的人工智能价值链非常相似。毕竟,在计算机硬件、云平台、基础模型、模型中心和机器学习操作 (MLOps)、应用程序和服务这六个顶级类别中,只有基础模型是新增的。
生成式人工智能系统生态构成
- 围绕特定领域知识的服务
- B2B和B2C应用,将基本基础模型,或经过优化基础模型用于特定的应用。
- 模型hubs和MLOps,管理,存放,优化基础模型
- 基础模型,核心模型,在这些核心模型的基础上生成式AI系统
- 云平台,提供强大计算机硬件平台
然而,更深入的观察揭示了市场机会的一些显着差异。首先,生成式人工智能系统的基础比大多数传统人工智能系统要复杂得多。因此,与交付相关的时间、成本和专业知识给整个价值链的新进入者和小公司带来了巨大的阻力。虽然整个领域都存在价值,但我们的研究表明,在可预见的未来,许多领域将继续由科技巨头和现有企业主导。
生成式人工智能应用市场是价值链中预计增长最快的部分,并为现有科技公司和新市场进入者提供重要的价值创造机会。使用专门或专有数据来微调应用程序的公司可以比不使用专门或专有数据的公司获得显着的竞争优势。