强化学习(Reinforcement Learning, RL)是一种基于试错的方法,旨在通过智能体与环境的交互,学习能够最大化累积奖励的策略。以下是强化学习的详细介绍。
强化学习的核心概念
-
智能体(Agent)
执行动作并与环境交互的主体。 -
环境(Environment)
智能体所处的外部环境,智能体从环境中获取状态和奖励。 -
状态(State, S)
描述环境在某一时刻的特征信息。 -
动作(Action, A)
智能体在某一状态下可以采取的行为。 -
奖励(Reward, R)
环境对智能体某个动作的反馈,指导智能体的学习目标。 -
策略(Policy, π)
决定智能体在特定状态下选择动作的规则,分为:- 确定性策略:每个状态对应唯一的动作。
- 随机性策略:每个状态对应一组动作的概率分布。
-
值函数(Value Function)
衡量智能体在某一状态或执行某一动作的长期回报,分为:- 状态值函数:
- 状态-动作值函数:
- 状态值函数:
-
折扣因子(Discount Factor,