【机器学习】机器学习的基本分类-强化学习(Reinforcement Learning, RL)

强化学习(Reinforcement Learning, RL)是一种基于试错的方法,旨在通过智能体与环境的交互,学习能够最大化累积奖励的策略。以下是强化学习的详细介绍。


强化学习的核心概念

  1. 智能体(Agent)
    执行动作并与环境交互的主体。

  2. 环境(Environment)
    智能体所处的外部环境,智能体从环境中获取状态和奖励。

  3. 状态(State, S)
    描述环境在某一时刻的特征信息。

  4. 动作(Action, A)
    智能体在某一状态下可以采取的行为。

  5. 奖励(Reward, R)
    环境对智能体某个动作的反馈,指导智能体的学习目标。

  6. 策略(Policy, π)
    决定智能体在特定状态下选择动作的规则,分为:

    • 确定性策略:每个状态对应唯一的动作。
    • 随机性策略:每个状态对应一组动作的概率分布。
  7. 值函数(Value Function)
    衡量智能体在某一状态或执行某一动作的长期回报,分为:

    • 状态值函数V(s) = \mathbb{E}[R | S=s]
    • 状态-动作值函数Q(s, a) = \mathbb{E}[R | S=s, A=a]
  8. 折扣因子(Discount Factor,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值