【漫话机器学习系列】035.导数(Derivative)

导数是微积分中的一个核心概念,用于描述函数的变化率。它表示函数在某一点处的瞬时变化率或斜率,是研究函数行为的重要工具。


导数的基本定义

导数的定义基于极限的概念。如果函数 f(x) 在点 x=a 处可导,其导数定义为:

f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}

其中,hhh 是一个无限接近零的增量,分母表示自变量的变化,分子表示因变量的变化。


几何意义

  • 导数表示曲线在某一点的切线斜率
  • 如果导数为正,函数在该点附近是递增的;如果为负,函数在该点附近是递减的。
  • 如果导数为零,可能意味着该点是一个极值点(最大值或最小值)。

物理意义

在物理学中,导数常用于描述某些量的瞬时变化率。例如:

  • 位置函数的导数表示速度。
  • 速度函数的导数表示加速度。

导数的表示法

导数可以用多种方式表示:

  1. f'(x) 或 y′:最常见的符号,表示函数 f(x) 的导数。
  2. \frac{dy}{dx}:表示 y 对 x 的变化率。
  3. D_x f(x):表示对 x 的导数。
  4. \dot{y}​:常用于物理学,表示对时间的导数。

常用导数公式

  1. 常数函数:

    \frac{d}{dx}C = 0
  2. 幂函数:

    \frac{d}{dx}x^n = nx^{n-1}
  3. 指数函数:

    \frac{d}{dx}e^x = e^x, \quad \frac{d}{dx}a^x = a^x \ln a
  4. 对数函数:

    \frac{d}{dx}\ln x = \frac{1}{x}
  5. 三角函数:

    \frac{d}{dx}\sin x = \cos x, \quad \frac{d}{dx}\cos x = -\sin x, \quad \frac{d}{dx}\tan x = \sec^2 x
  6. 复合函数(链式法则):
    如果 y=f(g(x)),则:

    \frac{dy}{dx} = f'(g(x)) \cdot g'(x)
  7. 积和函数:

    • \frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)
    • \frac{d}{dx}[f(x) \cdot g(x)] = f'(x)g(x) + f(x)g'(x)
    • \frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}

导数的应用

  1. 极值问题

    • 在优化问题中,通过寻找导数为零的点,确定函数的极值。
  2. 切线方程

    • 给定曲线 y=f(x) 和切点 (x_0, f(x_0)),切线方程为:

      y - f(x_0) = f'(x_0)(x - x_0)
  3. 物理中的应用

    • 用于描述运动学问题,如速度和加速度。
  4. 经济学中的应用

    • 用于寻找利润最大化、成本最小化点。
  5. 机器学习中的应用

    • 优化算法(如梯度下降)依赖于导数来更新模型参数。

高阶导数

高阶导数是导数的导数,用于描述函数的更高阶变化。

  • 二阶导数: f''(x) = \frac{d^2f(x)}{dx^2}
  • 用途:
    • 二阶导数可以判断函数的凸性。
    • 二阶导数为正表示函数在该点处为凹函数(开口向上),为负表示凸函数(开口向下)。

实例:导数的计算

例1:简单函数的导数

函数:

f(x) = x^3 + 2x^2 + x + 5

求导:

f'(x) = 3x^2 + 4x + 1

例2:复合函数的导数

函数:

f(x) = e^{x^2}

求导:

f'(x) = e^{x^2} \cdot 2x

例3:三角函数的导数

函数:

f(x) = \sin(2x)

求导:

f'(x) = \cos(2x) \cdot 2 = 2\cos(2x)


总结

导数是研究函数变化率的重要工具,在数学、物理、经济学、机器学习等领域有广泛应用。掌握导数的基本概念、公式及其应用方法,是解决问题和理解复杂系统的基础。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值