【漫话机器学习系列】095.决策边界(Decision Boundary)

1. 什么是决策边界?

决策边界(Decision Boundary)是用于划分不同类别的边界线或超平面。在分类任务中,模型根据输入特征的值来决定样本的类别,决策边界正是模型将输入空间划分为不同类别区域的关键。

在上图中:

  • 蓝色点表示一类数据
  • 红色点表示另一类数据
  • 虚线为决策边界,表示模型如何划分不同类别的区域

在这条边界的一侧,所有的样本都被分类为蓝色,另一侧的所有样本都被分类为红色


2. 决策边界的类型

决策边界的形状取决于分类模型的性质,可以是线性非线性的。

(1) 线性决策边界

如果分类模型是线性分类器(如 Logistic 回归、线性 SVM),那么决策边界是一个直线(2D)、平面(3D)或超平面(高维)

  • 数学表达(以 2D 二分类为例࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值