1. 什么是决策边界?
决策边界(Decision Boundary)是用于划分不同类别的边界线或超平面。在分类任务中,模型根据输入特征的值来决定样本的类别,决策边界正是模型将输入空间划分为不同类别区域的关键。
在上图中:
- 蓝色点表示一类数据
- 红色点表示另一类数据
- 虚线为决策边界,表示模型如何划分不同类别的区域
在这条边界的一侧,所有的样本都被分类为蓝色,另一侧的所有样本都被分类为红色。
2. 决策边界的类型
决策边界的形状取决于分类模型的性质,可以是线性或非线性的。
(1) 线性决策边界
如果分类模型是线性分类器(如 Logistic 回归、线性 SVM),那么决策边界是一个直线(2D)、平面(3D)或超平面(高维)。
-
数学表达(以 2D 二分类为例