第四章:大模型(LLM)
第七部分:Prompt 工程
第二节:Zero-shot Prompt
1. 什么是 Zero-shot Prompt
Zero-shot Prompt(零样本提示) 是指在没有任何示例的情况下,仅通过自然语言指令直接引导大模型完成任务。
-
“Zero-shot”中的“Zero”表示:不给模型额外的参考示例。
-
模型完全依赖其预训练知识和推理能力来生成答案。
例如:
指令:将以下句子翻译成英文:我喜欢人工智能。
输出:I like artificial intelligence.
在这个例子中,用户只提供了任务说明(翻译),并没有给出任何示例翻译,模型依旧能够完成。
2. Zero-shot Prompt 的特点
-
简洁性
-
不需要准备样本,直接输入问题或指令即可。
-
-
快速性
-
适合临时查询或探索型问题,尤其是一次性的小任务。
-
-
依赖模型能力
-
结果质量与模型本身的预训练水平密切相关。
-
-
适用范围广
-
适合常见任务(翻译、总结、问答、分类等)。
-
对于需要复杂推理或严格格式的任务,可能效果有限。
-
3. Zero-shot Prompt 的常见应用场景
-
文本翻译
-
Prompt:
“请将以下中文句子翻译成法语:我正在学习人工智能。”
-
-
文本总结
-
Prompt:
“请用三句话总结以下新闻内容:……”
-
-
情感分析
-
Prompt:
“请判断以下评论的情感倾向(积极、消极、中立):‘这款手机的电池续航非常差。’”
-
-
事实问答
-
Prompt:
“中国的首都是哪里?”
-
-
代码生成
-
Prompt:
“请用 Python 写一个快速排序算法。”
-
4. Zero-shot Prompt 的优势
-
使用成本低:不需要构造训练样本。
-
灵活性高:几乎可以对任何问题直接提问。
-
入门友好:是学习 Prompt 工程最简单的方式。
5. Zero-shot Prompt 的局限性
-
精度不稳定
-
对复杂问题,模型可能给出模糊或错误答案。
-
-
可控性差
-
没有格式约束时,输出可能偏离预期。
-
-
上下文依赖弱
-
如果问题涉及特定格式、风格或领域知识,缺乏示例可能导致偏差。
-
6. 优化 Zero-shot Prompt 的技巧
即使是零样本提示,也可以通过优化指令来提高效果:
-
明确任务:避免含糊不清。
-
❌ 不佳示例:请帮我处理这段文字。
-
✅ 优化示例:请将这段文字总结为 100 字以内的新闻摘要。
-
-
设定输出格式:告诉模型如何回答。
-
示例:
“请用 JSON 格式回答,包含字段 sentiment 和 reason。”
-
-
加上角色设定:增强语气与风格。
-
示例:
“你是一名专业的心理学家,请分析以下评论的情绪。”
-
-
限制长度:避免冗长回答。
-
示例:
“请用 50 字以内的语言总结以下段落。”
-
7. 案例演示
任务:新闻摘要
-
Zero-shot Prompt:
“请用三句话总结以下新闻:人工智能正在快速发展,许多公司纷纷投资 AI 技术,以推动生产力提升和新产品开发。然而,一些学者担心 AI 可能带来就业冲击和伦理问题。各国政府正积极制定政策以平衡创新与监管。”
-
模型可能输出:
-
人工智能快速发展,企业加大投资。
-
学者担忧 AI 引发就业和伦理问题。
-
政府努力平衡创新与监管。
-
8. 小结
-
Zero-shot Prompt 是最基础、最直观的提示方式。
-
它不依赖示例,仅通过任务指令让模型完成目标。
-
优势在于简单、快速、灵活;劣势是可控性和稳定性较差。
-
提高 Zero-shot Prompt 效果的关键在于:任务明确、格式清晰、角色设定、输出约束。