【有源码】大数据背景下基于Python的高校数据采集分析与推荐系统K-means算法与协同过滤推荐可视化分析

注意:该项目只展示部分功能,如需了解,文末咨询即可。

1.开发环境

开发语言:Python
采用技术:K-means算法
数据库:MySQL
开发环境:PyCharm

2 系统设计

2.1 设计背景

在高等教育领域,随着教育资源的日益丰富和社会需求的不断变化,高校的排名和评价成为了学生选择学校的重要参考依据。为了帮助学生、家长以及教育机构更好地理解和利用这些信息,高效的数据采集和分析系统变得尤为重要。传统的数据获取方式往往依赖于人工调查和静态报告,无法实时反映高校数据的变化趋势。Python作为一种强大的编程语言,凭借其丰富的数据处理库和强大的网络爬虫能力,为高校数据的采集和分析提供了理想的技术支持。Scrapy框架的使用能够高效地从软科大学排名网站等源头获取大量的高校数据,而数据处理和清洗则确保了数据的准确性和可靠性。将这些数据存储在MySQL数据库中,使得数据的管理和查询变得高效且系统化。通过这些技术手段,可以实现对高校数据的全面收集和深入分析,从而为各类用户提供有价值的决策支持。

基于Python的高校数据采集分析与推荐系统不仅具有技术上的先进性,更具备深远的实际应用价值。通过Scrapy爬虫技术自动化地获取高校数据,可以大大提高数据采集的效率,减少人工干预,保证数据的时效性和完整性。数据清洗和处理确保了数据的高质量,为后续的分析奠定了基础。数据存储在MySQL数据库中,不仅便于管理和检索,还能够支持大规模数据的处理需求。系统的可视化分析功能,如省市分布分析、高校水平分析、大学排名分析等,能够帮助用户直观地了解高校的分布和水平,提供清晰的数据洞察。而K-means算法的应用则能够对数据进行聚类分析,揭示大学之间的潜在关联和评价趋势。这些功能的结合,不仅提高了数据分析的深度和广度,还为决策者提供了科学的数据支持,推动了高校选择和教育资源优化的智能化进程。

2.2 设计内容

基于Python的高校数据采集分析与推荐系统系统的设计内容涵盖了从数据采集到最终分析和展示的全流程。系统通过Scrapy爬虫框架从软科大学排名网站中提取相关高校数据,这些数据包括学校的基本信息、排名、评价分数等。爬取的数据经过清洗和处理后,被存储到MySQL数据库中,确保数据的整洁性和结构化系统利用大屏可视化技术,通过Echarts展示省市分布、高校水平、大学排名和大学类型等多维度分析结果,提供丰富的图表和数据视图,帮助用户快速理解数据。K-means算法被用于分析评价总分的满意度,通过聚类分析揭示不同类型高校的评价特点。系统基于Python和Flask框架构建了一个Web应用,提供了用户登录、高校数据管理、词云展示、协同过滤推荐和数据可视化分析等功能,使用户能够通过直观的界面进行交互和数据探索。整个系统的设计不仅实现了数据的自动化处理和可视化展示,还通过协同过滤推荐提升了用户的个性化体验,具有较高的实用价值和技术创新性。

3 系统展示

3.1 功能展示视频

协同过滤+k-means的高校数据可视化分析Python爬虫

3.2 页面展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4 更多推荐

计算机毕设选题精选汇总
基于Hadoop大数据电商平台用户行为分析与可视化系统
基于Python的民宿数据可视化与价格预测系统
基于python+爬虫的高考数据分析与可视化系统
基于Spark大数据的餐饮外卖数据分析可视化系统
Django+Python数据分析岗位招聘信息爬取与分析
基于ftree算法招聘数据采集与分析

5 部分功能代码

5.1 数据采集代码

import scrapy

class UniversitySpider(scrapy.Spider):
    name = 'university_spider'
    start_urls = ['https://example.com/rankings']  # 替换为实际的大学排名页面URL

    def parse(self, response):
        # 解析页面中的大学排名数据
        for university in response.css('.ranking-item'):  # 根据实际网页的HTML结构调整选择器
            yield {
                'name': university.css('.university-name::text').get().strip(),
                'rank': university.css('.university-rank::text').get().strip(),
                'score': university.css('.university-score::text').get().strip(),
            }
        
        # 处理分页(如果有的话)
        next_page = response.css('a.next-page::attr(href)').get()  # 根据实际网页的HTML结构调整选择器
        if next_page is not None:
            yield response.follow(next_page, self.parse)

5.2 协同过滤推荐代码

import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.preprocessing import StandardScaler
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import linear_kernel

# 读取数据
data = pd.read_csv('university_data.csv')

# 创建用户-高校评分矩阵
user_university_matrix = data.pivot(index='user_id', columns='university_name', values='rating').fillna(0)

# 计算用户相似性
user_similarity = cosine_similarity(user_university_matrix)
user_similarity_df = pd.DataFrame(user_similarity, index=user_university_matrix.index, columns=user_university_matrix.index)

def get_user_recommendations(user_id, num_recommendations=5):
    similar_users = user_similarity_df[user_id].sort_values(ascending=False).index[1:]  # 排除自己
    similar_users_ratings = user_university_matrix.loc[similar_users].mean(axis=0)
    recommendations = similar_users_ratings.sort_values(ascending=False).head(num_recommendations)
    return recommendations.index.tolist()

# 获取推荐结果
user_id = 1
recommendations = get_user_recommendations(user_id)
print(f"Recommendations for user {user_id}: {recommendations}")
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity

# 读取数据
data = pd.read_csv('university_data.csv')

# 创建高校-用户评分矩阵
university_user_matrix = data.pivot(index='university_name', columns='user_id', values='rating').fillna(0)

# 计算高校相似性
university_similarity = cosine_similarity(university_user_matrix)
university_similarity_df = pd.DataFrame(university_similarity, index=university_user_matrix.index, columns=university_user_matrix.index)

def get_university_recommendations(university_name, num_recommendations=5):
    similar_universities = university_similarity_df[university_name].sort_values(ascending=False).index[1:]  # 排除自己
    recommendations = similar_universities[:num_recommendations]
    return recommendations

# 获取推荐结果
university_name = 'Harvard University'
recommendations = get_university_recommendations(university_name)
print(f"Recommendations similar to {university_name}: {recommendations}")

源码项目、定制开发、文档报告、PPT、代码答疑
希望和大家多多交流!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值