机器学习算法精讲20篇(一)-k-means聚类算法应用案例(附示例代码)

本文详述k-means聚类算法,包括其原理、步骤、优化方法(k-means++)、小批量处理、簇类个数选取策略,并探讨了k-means在各向异性、非凸数据、标准差不等及高维数据等场景的局限性,同时与knn算法进行了对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

k-means算法是非监督聚类最常用的一种方法,因其算法简单和很好的适用于大样本数据,广泛应用于不同领域,本文详细总结了k-means聚类算法原理 。

以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟!

MATLAB-30天带你从入门到精通

MATLAB深入理解高级教程(附源码)

tableau可视化数据分析高级教程

1. k-means聚类算法原理

若簇类相似度好簇间的相似度差,则聚类算法的性能较好。我们基于此定义k-means聚类算法的目标函数:

<think>嗯,用户想了解深度学习聚类损失函数的概念、实现方法和应用场景。首先,我需要明确深度聚类的基本概念,结合传统聚类深度学习的结合点。记得用户提到了引用[2]中的内容,说深度学习直接聚类可能有困难,通常需要先降维再聚类,所以可能需要解释为什么损失函数的设计很重要。 接下来,用户可能想知道具体的损失函数类型。比如,基于重建的损失,像自编码器用的MSE;还有对比损失,引用[3]里的对比学习在图聚类中的应用,这里可以提到结构致性目标函数。另外,聚类导向的损失,如KL散度,用于分布匹配,或者使用k-means的辅助损失。 然后是实现方法,可能需要分步骤讲,比如网络结构设计、损失函数组合、训练策略。这里要结合引用[3]中的方法,比如预处理和MLP主干,数据增强的方式。还要注意优化策略,如交替训练或联合训练。 应用场景方面,用户可能关心图像、文本、图数据等的聚类,引用[3]中的图聚类例子是个好例子。另外,跨模态和多任务学习也是应用方向。 最后,生成相关问题时要覆盖用户可能进步想了解的内容,比如对比学习的作用、自编码器的应用、评估指标等。确保引用正确,比如引用[2]和[3]中的相关内容。还要注意使用正确的中文术语,保持回答结构清晰,分点说明,方便用户理解。</think>### 深度聚类中的损失函数:实现与应用 #### 1. 深度聚类的基本概念 深度聚类结合了深度学习的特征提取能力和传统聚类算法的无监督分类能力,核心在于通过神经网络学习低维判别性表征,再对特征空间进行聚类。其关键在于设计能够同时优化特征学习和聚类目标的**损失函数**[^2]。 #### 2. 常见损失函数类型 ##### (1) 基于重建的损失 - **实现原理**:通过自编码器(Autoencoder)重构输入数据,保留主要特征 - **损失函数**: $$L_{recon} = \frac{1}{N}\sum_{i=1}^{N}||x_i - \hat{x}_i||^2$$ 其中$x_i$为输入,$\hat{x}_i$为解码输出 - **应用场景**:图像聚类、语音特征提取 ##### (2) 对比学习损失 - **实现原理**:通过数据增强构建正负样本对,拉近同类样本特征距离[^3] - **损失函数**(InfoNCE): $$L_{contrast} = -\log\frac{\exp(sim(z_i,z_j)/\tau)}{\sum_{k=1}^{K}\exp(sim(z_i,z_k)/\tau)}$$ - **应用场景**:图数据聚类、跨模态聚类 ##### (3) 聚类导向损失 - **KL散度损失**(分布匹配): $$L_{KL} = \sum_{i=1}^{N}\sum_{j=1}^{C}p_{ij}\log\frac{p_{ij}}{q_{ij}}$$ 其中$p_{ij}$为软分配概率,$q_{ij}$为目标分布 - **K-means辅助损失**: $$L_{kmeans} = \sum_{i=1}^{N}||z_i - \mu_{c_i}||^2$$ 其中$\mu_{c_i}$为样本$i$对应簇中心 #### 3. 实现方法 1. **网络架构设计**: - 典型结构:编码器(特征提取)+ 聚类层(概率分配) - 改进方案:引用[3]提出的双MLP架构+低通去噪预处理 2. **损失函数组合**: ```python # 伪代码示例 total_loss = α*L_recon + β*L_cluster + γ*L_contrast ``` 3. **训练策略**: - 交替训练:先预训练编码器,再联合优化 - 渐进式训练:动态调整损失权重 #### 4. 应用场景 | 领域 | 典型案例 | 关键技术 | |------------|-----------------------------------|---------------------------| | 图像处理 | 人脸图像聚类 | 卷积自编码器+KL散度损失 | | 文本分析 | 新闻主题聚类 | BERT+对比学习损失 | | 生物信息 | 单细胞RNA序列分类 | 图卷积网络+K-means辅助损失 | | 推荐系统 | 用户行为模式发现 | 多模态对比损失 | #### 5. 关键挑战 1. **表征-聚类耦合问题**:需平衡特征学习和聚类优化 2. **维度灾难**:高维数据易导致"维数诅咒" 3. **评估困难**:缺乏真实标签时依赖内部指标(如轮廓系数)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值