随机性模型根据事件发生的可能性或者概率加权可能性来预测事件发生的结果.
蒙特卡洛模拟作为一种概率模拟,用来研究风险和不确定性因素对预测的影响.这是一种输入一系列随机数反复评估确定性模型的方法.适用于复杂模型,非线性模型或包含很多不确定性模型.
随机x1
随机x2 ----------------->>> 模型 f(x1,x2,x3) ---------------->>>最可能的结果
随机x3
模拟库存问题
水果零售员每天出售水果,每份订单有Y个单位。每卖出一个单位会有60美分的利润,在一天结束时未出售的部分以每件40美分的损失抛售。每天的需求D服从均匀分布【80,140】。请问为了使预期利润最大化,需要有多少单位订单?
我们用P表示利润,s表示销售数量,d表示的需求量,则有:
P={ 0.6s , 若d>=s
{ 0.6d - 0.4(s-d) , 若s>d
Max Profit : 119.3999999999999999 log(119.4) = 4.782
example 2:
The probaility of a shared birthday in class of 30 is 0.7009 30个人的班级,两个人同一天生日为 70%