Pytorch 随笔0712

该文展示了在PyTorch环境中进行自动微分的基本步骤,包括创建浮点数Tensor以启用梯度计算,执行数学运算,使用`.requires_grad_()`和`.backward()`函数计算梯度,以及如何清零梯度值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2.5自动微分
(P42)


(base) C:\Users\杨珊>conda activate env_pytorch

(env_pytorch) C:\Users\杨珊>python
Python 3.7.16 (default, Jan 17 2023, 16:06:28) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch


>>> x=torch.arange(4)
>>> x
tensor([0, 1, 2, 3])
>>> x.requires_grad_(True)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
RuntimeError: only Tensors of floating point dtype can require gradients



>>> x=torch.arange(4.0,requires_grad=True)
>>> x.grad
>>> x.grad=4=4*x
  File "<stdin>", line 1
SyntaxError: can't assign to literal



>>> y=2*torch.dot(x,x)
>>> y
tensor(28., grad_fn=<MulBackward0>)
>>> y.backward()
>>> x.grad
tensor([ 0.,  4.,  8., 12.])
>>> x.grad==4*x
tensor([True, True, True, True])




>>> x.grad.zero_()
tensor([0., 0., 0., 0.])
>>> y=x*x
>>> y
tensor([0., 1., 4., 9.], grad_fn=<MulBackward0>)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT__shan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值