《人工神经网络》期末复习文档汇总

人工神经网络定义:由许多简单的并行工作的处理单元组成的系统,功能取决于网络的结构、连接强度及个单元处理方式。

人工神经网络基本功能:联想记忆功能、非线性映射功能、分类与识别功能、优化计算功能、知识处理功能。

人工神经网络结构特点:并行处理、分布式存储、可联性、可塑性。

人工神经网络性能特点:非线性、容错性、非精准性。

人工神经网络低潮:求解非线性需要隐层。

人工神经网络复兴Hopfield 网络。

决定人工神经元三要素:节点本身信息处理能力(数学模型)、节点与节点之间连接(拓扑结构)、相互连接强度(通过学习来调整)。

前馈型网络:处理方向:输入层 \rightarrow 各隐层 \rightarrow 输出层。

反馈型网络:所有节点都有处理功能,每个节点既可从外界接受输入又可向外界输出。

自组织特征映射网:SOM网、SOFM网、kohonen网
学习向量量化:LVQ
对偶传播神经网络:CPN
径向基函数:RBF
误差反向传播:BP
残差网络:ResNet
长短期记忆神经网络:LSTM
递归神经网络:RNN
卷积神经网络:CNN

hebbian   learning:前馈无监督学习
感知器:前馈有监督学习
LVQ:前向有监督学习(前两层无监督、最后一层有监督)
MLP、BP、RBF、CNN:前馈网络模型
SOM:无监督学习模型

神经网络学习过程:在外界输入样本刺激下不断改变网络的连接权值乃至拓扑排序,以使网络的输出不能接近期望输出。
神经网络学习本质:对可变权值的动态调整。
神经网络学习规则\Delta \omega _{j}=\eta r[\omega _{j}(t)\cdot x(t)\cdot d_{j}(t)]\cdot X(t)  【BP算法是一种学习规则】

自组织学习算法步骤:
1、基于k-均值聚类算法求基函数中心
      网络初始化
      将输入训练样本按K近邻分组
      重新调整聚类中心
2、求解方差
3、计算隐含层及输出层权值

循环神经网络
优点:引入记忆、图灵完备
缺点:长程依赖问题、记忆完备问题、并行能力
梯度爆炸问题:权重衰减、梯度截断
梯度消失问题:改进模型
通过使用自带反馈的神经元处理任意长度的序列

Yolov5 用 CIOV Loss 作为 bounding box 损失
Yolov3/Yolov5 用二元交叉熵损失计算类别概率,目标置信度损失
Yolov3 用多个独立逻辑分类器替换 softmax 函数,以计算输入属于特定标签可能性
Yolov3 思想:通过特征提取网络,对输入图像提取特征 \rightarrow 将输入图像分 grid cells \rightarrow 目标落在哪个 grid cell 中就用该 grid cell 来预测目标。

Kolonen 学习算法:初始化 \rightarrow 接收输入 \rightarrow 寻找获胜神经元 \rightarrow 定义优胜领域 N_{j}(t) \rightarrow 调整权值 \rightarrow 结果检验

LVQ1 算法:网络初始化 \rightarrow 输入向量输入 \rightarrow 计算隐含层权值向量与输入向量距离 \rightarrow 选择与权值向量距离最小的神经元 \rightarrow 更新连接权值 \rightarrow 判断是否满足最大迭代次数
LVQ2 算法:(1)~(4)与 LVQ1 算法相同 \rightarrow 更新连接权值 \rightarrow 判断算法结束

CPN 算法:阶段一:内星权随机赋 0~1 初值 \rightarrow 归一化 \rightarrow 输入 \rightarrow 确定竞争获胜神经元 \rightarrow 不设优胜领域,只调整内星权向量 \rightarrow 直至下降到 0
                   阶段二:输入 \rightarrow 确定竞争获胜神经元 \rightarrow 调整外星权向量 \rightarrow 下降为 0 
(阶段一用竞争学习算法对输入至隐层内星权向量训练,阶段二用外星学习算法对隐层到输出外星权向量判别)

单层感知器局限:只能解决线性可分问题。
解决办法:引入隐层,变为多层感知器(转移函数:非线性连续函数)

判决域:无隐层:半平面;单隐层:凸域;双隐层:任意复杂形状域

AlexNet:5个卷积层,3个汇聚层、3个全连接层

提高网络性能途径:包含隐层的多层前馈网络、非线性连续转移函数

权值调整三因素决定:学习率、本层输出的误差信号、本层输入信号

单层感知器
模型:单计算节点感知器实际上是一个 M-P 神经元模型
功能:解决线性可分问题
局限性:不能解决线性不可分问题
学习算法:有导师学习

多层感知器
模型:有隐层的多层前馈网络
功能:能够求解非线性问题
局限性:隐层神经元的学习规则尚无所知

多层前馈网能力
非线性映射:存储大量输入输出模式映射关系
泛化能力:未见过非样本输入 \rightarrow 正确映射
容错能力:误差对输入输出规律影响很小

归一化:原因:物理意义转以同等重要地位
                         防止净输入过大使神经元输出饱和
                         不归一化则数值大绝对误差大,反之亦然
               方法:尺度变换、分布变换

标准 BP(Sigmoid 激活函数)
输入输出问题 \rightarrow 非线性映射问题 \rightarrow 梯度下降迭代求权值
两过程:净输出前向计算、误差反向传播
局限性:误差曲面分布:存在平坦区:误差下降慢、大大增加训练次数,影响收敛速度(原因:各节点净输入过大)
                                        存在多个极小点:易陷入局部最小点
               根源:基于误差梯度下降的权值调整规则每一步求解都是基于局部最优

改进 BP(Sigmoid 激活函数)
调整:利用算法 \rightarrow 权值调整过程‘走’合适路径(跳出平坦区/局部最小点)
操作:进入平坦区/局部最小点进行判断 \rightarrow 通过改变参数使权值调整合理
改进:增加动量项:从前一次权值调整量取一部分迭加到本次权值调整量中,动量项反映以前积累的经验,起阻尼作用(t 时刻误差梯度下降方向)
           自适应调节学习率:自适应改变学习率,根据环境增大或减小(\eta 学习率)
           引入陡度因子:设法压缩神经元的净输入,使输出函数转移函数不饱和区(误差曲面存在平坦区域)

自组织神经网络
通过自动寻找样本中内在规律和本质属性(通过竞争学习实现)
竞争学习:相互竞争以求被激活 \rightarrow 每时刻只有一个输出神经元被激活
                  方法:向量归一化
                             寻找获胜神经元:竞争层所有神经元对应内星权向量均与输入向量相似性比较,最相似判为竞争获胜神经元
                             网络输出与权值调整:直至学习率衰减到 0
SOM网:有两层:输入 \rightarrow 视网膜;输出 \rightarrow 大脑皮层
                获胜神经元对其邻近神经元影响由近及远(均不同程度调整权向量)
                优胜邻域内调整(开始很大,不断调整,最终半径为零)
                功能:保序映射(属性相似位置相邻)数据压缩、特征提取
LVQ网:教师信号对输入样本类别进行规定,克服自组织无监督的分类信息弱点(在竞争网络基础上提出【竞争学习思想、有监督学习思想结合】)
              三层:输入层、隐含层、输出层(输入与隐含全连接,输出与隐含不同组相连)【隐含与输出权值固定为1
CPN网:运行过程:竞争产生获胜神经节点 \rightarrow 获胜节点外星向量决定输出

RBF
单隐层的三层前向网络
两种模型:正规化网络和广义网络
思想:用RBF作隐单元的“基”构成隐含层空间 \rightarrow 输入矢量直接映射隐空间 \rightarrow 中心点确定后,映射点确定 \rightarrow 隐函输出映射是线性的
基函数选 Green 格林函数(高斯函数为特殊的格林函数)
激活函数采用径向基函数

CGAN(条件 GAN)可使 GAN 无监督算法转变为有监督算法
DCGAN 的生成器和判别器舍弃了 CNN 池化层:判别器保留 CNN 整体架构
                                                                              生成器将卷积层替换为反卷积层

卷积神经网络(卷积层、池化层)
受生物学感受野机制提出
三个特征:局部连接、权重共享、空间和时间上次采样
趋向:小卷积、大深度、全卷积
有多少张输入图片就有多少个卷积核,有多少输出图片就有多少个神经元
结构:输入层
           输出层
           隐藏层:卷积层:局部特征提取、训练中参数学习、每个卷积核提取特定模式特征
                         池化层:降低数据维度避免过拟合、增强局部感受野、提高平稳不变性
                         全连接层:特征提取到分类的桥梁
卷积过程:覆盖、相乘、求和
局部感知:通过底层的局部扫描获得图像局部特征,然后在高层综合这些特征获取图像全局信息
                  作用:降低参数数目
权值共享:CNN中每个卷积核里面的参数即权值,原始图片卷积后会得到一副新图片,而新图片中的每个像素都来自同一个卷积核
                  作用:进一步降低参数数目
池化层:旨在通过降低特征图分辨率来获得具有空间不变性特征(二次提取特征)
              作用:减少参数数量:提高计算效率
                         提高局部平移不变性:大大提高图像分类准确性
                         降低数据维度:有效避免过拟合
                         增强网络对输入图像中的小变形、扭曲、平坦的鲁棒性
反向传播:结构:求出结果与期望误差,一层一层返回,计算每层误差,进行权值调整
                  Why?输入 \rightarrow 输出(卷积层、池化层、全连接层),传递产生数据损失,误差产生

  • 8
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
人工神经网络是一种模拟人脑神经系统的计算模型,它由大量的人工神经元相互连接组成,通过模拟神经元之间的连接和信号传递来实现数据处理和学习。人工神经网络的优势在于它能够通过学习和训练得到自适应的行为,并且具有较强的容错性。 人工神经网络广泛应用于许多领域,如图像识别、语音识别、自然语言处理等。在图像识别中,人工神经网络可以提取图像的特征,并进行分类和识别,从而实现人脸识别、物体识别等应用。在语音识别中,人工神经网络可以对语音信号进行处理和分析,从而实现语音转文字、语音指令识别等功能。 人工神经网络的发展离不开机器学习和深度学习的支持。机器学习是指通过训练数据和算法,使计算机具备从数据中学习和发现规律的能力。深度学习是一种特殊的机器学习方法,它利用多层神经网络进行模式识别和特征提取。 尽管人工神经网络在某些领域取得了很好的效果,但它仍然存在一些问题和挑战。首先,人工神经网络的训练需要大量的数据和计算资源,而且训练时间较长。其次,人工神经网络的结构较为复杂,不易解释和理解其内部工作机制。此外,人工神经网络的鲁棒性和安全性也是需要考虑的问题。 总的来说,人工神经网络在现代科学和技术中扮演着重要的角色。它的发展和应用对于推动人工智能的进步和实现智能化社会具有重要意义。然而,人工神经网络仍然有许多待解决的问题,需要进一步研究和探索。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荣仔!最靓的仔!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值