动态规划过程是:每次决策依赖于当前状态,又随机引起状态的转移。一个决策序列就是在变化的状态中产生,所以,这种多阶段最优化决策解决问题的过程称为动态规划。
给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
算法描述:
将矩阵连乘积简记为A[i:j] ,这里i≤j 设这个计算次序在矩阵Ak和Ak+1之间将矩阵链断开,i≤k<j,则其相应完全加括号方式为
代码实现:<span style="font-size:18px;">#include<iostream>
using namespace std;
void MatrixChain(int *p,int n,int **m,int **s){
for(int i = 1;i <= n;i++)
m[i][i] = 0;//初始化矩阵
// r 表示每次宽度
// i,j表示从从矩阵i到矩阵j
// k 表示切割位置
for(int r = 2;r <= n;r++)
for(int i = 1;i <= n-r+1li++){
int j = i+r-1;
// 从矩阵i到矩阵j连乘,从i的位置切割,前半部分为0
m[i][j] = m[i+1][j] + p[i-1]*p[i]*p[j];
s[i][j] = i;
for(int k = i+1;k < j;k++){
int t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];
if(t<m[i][j]){
m[i][j] = t;
s[i][j] = k;
}
}//for k
}//for i
}//for j
int main(){
int **m=new int*[10];//m分配空间
for(int i=0; i<10; i++)
m[i]=new int[10];
int p[6] = {30,35,15,5,10,25};//初始化p
int **s=new int*[10];//s分配空间
for(int i=0; i<10; i++)
s[i]=new int[10];
MatrixChain(p,6,m,s);//对矩阵连乘函数的调用
//打印连乘的过程
for(int i = 1;i < 6;i++){
for(int j = 0;j <6;j++){
if(j<i){
cout<<" ";
}else{
cout<<m[i][j]<<" ";
}
}
cout<<endl;
}
//打印连乘的次数
for(int i = 1;i < 6;i++){
for(int j = 0;j <6;j++){
if(j<=i){
cout<<" ";
}else{
cout<<s[i][j]<<" ";
}
}
cout<<endl;
}
return 0;
}</span>
运行结果
算例分析
初始条件**m(用于存放过程),数组p(所要计算的值),**s(用于存放连乘次数)。算法matrixChain的主要计算量取决于算法中对r,i和k的3重循环。循环体内的计算量为O(1),而3重循环的总次数为O(n3)。因此算法的计算时间上界为O(n3)。算法所占用的空间显然为O(n2)。
学习该算法心得
动态规划法是求解最优化问题的一种方法,动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。