神经网络训练手写字集

import matplotlib.pyplot as plt
from sklearn import neural_network
from sklearn.datasets import load_digits


# 加载数据集
digits = load_digits()
X = digits.data
Y = digits.target
# 过拟合:增加训练样本
train_x = X[:-100]; test_x = X[-100:]
train_y = Y[:-100]; test_y = Y[-100:]


def mlpclassifier_digits():
	classifier = neural_network.MLPClassifier(activation='logistic',
                                                  max_iter=10000, hidden_layer_sizes=(100,))
	classifier.fit(train_x, train_y)
	train_score = classifier.score(train_x, train_y)
	test_score = classifier.score(test_x, test_y)
	print(train_score)
	print(test_score)
	tes=test_y[:100]
	print(tes)
	res = classifier.predict(test_x[:100])
	print(res)
	fig = plt.figure(figsize=(6, 6))
	for i in range(100):
		ax = fig.add_subplot(10, 10, i + 1, xticks=[], yticks=[])
		ax.imshow(test_x.reshape(-1, 8, 8)[i], cmap=plt.cm.binary, interpolation='nearest')
		if tes[i] == res[i]:
			ax.text(0, 7, str(res[i]), color="green")
		else:
			ax.text(0, 7, str(res[i]), color='red')
	plt.show()


mlpclassifier_digits()

效果图:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MonicaUp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值