动手学习深度学习_Day03

softmax回归

我们讲到过的分类的例子都使用了二分分类,这种分类只有两种可能的标记0或1,是一只猫或者不是一只猫,如果我们有多种可能的类型的情况下有一种logistic回归的一般形式,叫做Softmax回归,能让你在试图识别某一分类时做出预测,或者说是多种分类中的一个,不只是识别两个分类。
在这里插入图片描述

我们将建立一个神经网络,其输出层有4个,因此 n ,即输出层的单元数量,等于4。我们想要输出层单元的数字告诉我们这4种类型中每个的概率有多大,所以这里的第一个节点输出的应该“某一类”的概率。在输入X 的情况下,第2个方格+圆圈会输出猫的概率。在输入 X 的情况下,第3个方格+圆圈。在输入X 的情况下,第4个方格+圆圈会输出鸡的概率。因此这里的 y ^ \hat{y} y^将是一个 4 ∗ 1维向量,因为它必须输出四个数字,给你这四种概率,因为它们加起来应该等于1,输出中的四个数字加起来应该等于1。
在这里插入图片描述
例如这里的第一个节点,它会输出0.842,这样说来,对于这张图片,如果这是你得到z的值 [ 5 , 2 , − 1 , 3 ] T [ 5,2, −1, 3 ]^T [5,2,1,3]T它是类0的概率就是84.2%。其他三种类型的概率同样,下一个是0.042 ,也就是4.2%的几率,下下一个是0.002 。最后一个是0.114,也就是11.4%
总结:

如果我们总结一下从z[l]到a[l]的计算步骤,整个计算过程,从计算幂到得出临时变量 t,再归一化,我们可以将此概括为一个Softmax激活函数。设 a [ l ] = g [ l ] ( z [ l ] ) a [ l ] = g [ l ] ( z [ l ] ) a[l]=g[l](z[l]),这一激活函数的与众不同之处在于,这个激活函数g需要输入一个4×1维向量,然后输出一个4×1维向量。之前,我们的激活函数都是接受单行数值输入,例如SigmoidReLu激活函数,输入一个实数,输出一个实数。Softmax激活函数的特殊之处在于,因为需要将所有可能的输出归一化,就需要输入一个向量,最后输出一个向量。

1.训练一个 Softmax分类器

在Softmax分类中,我们一般用到的损失函数是 L ( y ^ , y ) = − ∑ j = 1 4 y j l o g ⁡ y ^ j L ( \hat{y} , y ) = - \sum_{j=1}^{4} y_j log ⁡ \hat{y}_j L(y^,y)=j=14yjlogy^j,我们来看上面的单个样本来更好地理解整个过程。注意在这个样本中 y 1 = y 3 = y 4 = 0 y _1 = y _3 = y _4 = 0 y1=y3=y4=0 ,因为这些都是0,只有 y 2 = 1 y _2 = 1 y2=1 ,如果你看这个求和,所有含有值为0的 y j y_j yj的项都等于0,最后只剩下 − y 2 t l o g y ^ 2 − y_2 t log\hat{y}_2 y2tlogy^2 ,因为当你按照下标 j全部加起来,所有的项都为0,除了 j = 2 时,又因为 y 2 = 1 y_2 = 1 y2=1 ,所以它就等于 L ( y , y ) = − ∑ j = 1 4 y j l o g ⁡ y ^ j = − y 2 l o g y ^ 2 = − l o g y ^ 2 L ( y ^ , y ) = - \sum_{j=1}^{4} y_j log ⁡ \hat{y}_j=−y_2log \hat{y}_2=−log \hat{y}_2 L(y,y)=j=14yjlogy^j=y2logy^2=logy^2这就意味着,如果你的学习算法试图将它变小,因为梯度下降法是用来减少训练集的损失的,要使它变小的唯一方式就是使 − l o g y ^ 2 −log \hat{y}_2 logy^2变小,要想做到这一点,就需要使 y ^ 2 \hat{y} _ 2 y^2 尽可能大,因为这些是概率,所以不可能比1大,但这的确也讲得通,因为在这个例子中x是猫的图片,你就需要这项输出的概率尽可能地大。
概括来讲,损失函数所做的就是它找到你的训练集中的真实类别,然后试图使该类别相应的概率尽可能地高,

softmax回归的从零开始实现

首先导入相关的依赖,使用刚刚在 3.5节中引入的Fashion‐MNIST数据集,并设置数据迭代器的批量大小为256。

import torch
from IPython import display
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

1 初始化模型参数

在softmax回归中,我们的输出与类别一样多。因为我们的数据集有10个类别,所以网络输出维度为10。因此,权重将构成一个784 × 10的矩阵,偏置将构成一个1 × 10的行向量。与线性回归一样,我们将使用正态分布初始化我们的权重W,偏置初始化为0。

num_inputs = 784
num_outputs = 10
W = torch.normal(0, 0.01, size=(num_inputs, 
num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)

2 定义softmax操作

X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
# 分对x进行横向和纵向求和,得到结果如下
# print(X.sum(0, keepdim=True), X.sum(1, keepdim=True))
"""
tensor([[5., 7., 9.]]) tensor([[ 6.],
        [15.]])
"""

实现softmax由三个步骤组成:

  1. 对每个项求幂(使用exp);
  2. 对每一行求和(小批量中每个样本是一行),得到每个样本的规范化常数;
  3. 将每一行除以其规范化常数,确保结果的和为1。

softmax线性回归公式

y ^ j = exp ⁡ ( o j − max ⁡ ( o k ) ) exp ⁡ ( max ⁡ ( o k ) ) ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) exp ⁡ ( max ⁡ ( o k ) ) = exp ⁡ ( o j − max ⁡ ( o k ) ) ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) . \begin{aligned}\hat y_j & = \frac{\exp(o_j - \max(o_k))\exp(\max(o_k))}{\sum_k \exp(o_k - \max(o_k))\exp(\max(o_k))} \\& = \frac{\exp(o_j - \max(o_k))}{\sum_k \exp(o_k - \max(o_k))}.\end{aligned} y^j=kexp(okmax(ok))exp(max(ok))exp(ojmax(ok))exp(max(ok))=kexp(okmax(ok))exp(ojmax(ok)).

 def softmax(X):
        X_exp = torch.exp(X)
        partition = X_exp.sum(1, keepdim=True)
        return X_exp / partition # 这里应用了广播机制

对于任何随机输入,我们将每个元素变成一个非负数。此外,依据概率原理,每行总和为1。

3定义模型

定义softmax操作后,我们可以实现softmax回归模型。下面的代码定义了输入如何通过网络映射到输出。注 意,将数据传递到模型之前,我们使用reshape函数将每张原始图像展平为向量。

   def net(X):
        return softmax(torch.matmul(X.reshape(
        (-1,W.shape[0])), W) + b)

4定义损失函数

交叉熵采用真实标签的预测概率的负对数似然。这里我们不使用Python的for循环迭代预测(这往往是低效的),而是通过一个运算符选择所有元素。下面,我们创建一个数据样本y_hat,其中包含2个样本 在3个类别的预测概率,以及它们对应的标签y。有了y,我们知道在第一个样本中,第一类是正确的预测;而 在第二个样本中,第三类是正确的预测。然后使用y作为y_hat中概率的索引,我们选择第一个样本中第一个类的概率和第二个样本中第三个类的概率。

y = torch.tensor([0, 2])
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
print(y_hat[[0, 1], y])
def cross_entropy(y_hat, y):
    return -torch.log(y_hat[range(len(y_hat)), y])
print(cross_entropy(y_hat, y)) # tensor([2.3026, 0.6931])

5分类精度

当预测与标签分类y一致时,即是正确的。分类精度即正确预测数量与总预测数量之比。虽然直接优化精度可能很困难(因为精度的计算不可导),但精度通常是我们最关心的性能衡量标准,我们在训练分类器时几乎总会关注它。为了计算精度,我们执行以下操作。首先,如果y_hat是矩阵,那么假定第二个维度存储每个类的预测分数。我们使用argmax获得每行中最大元素的索引来获得预测类别。然后我们将预测类别与真实y元素进行比较。由于等式运算符“==”对数据类型很敏感,因此我们将y_hat的数据类型转换为与y的数据类型一致。结果是一个包含0(错)和1(对)的张量。最后,我们求和会得到正确预测的数量。

def accuracy(y_hat, y): #@save
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())

同样,对于任意数据迭代器data_iter可访问的数据集,我们可以评估在任意模型net的精度。

def evaluate_accuracy(net, data_iter): #@save
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval() # 将模型设置为评估模式
    metric = Accumulator(2) # 正确预测数、预测总数
    with torch.no_grad():
        for X, y in data_iter:
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

定义一个实用程序类Accumulator,用于对多个变量进行累加。在上面的evaluate_accuracy函数中,我 们在Accumulator实例中创建了2个变量,分别用于存储正确预测的数量和预测的总数量。当我们遍历数据集 时,两者都将随着时间的推移而累加。

class Accumulator: #@save
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n
    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]
    def reset(self):
        self.data = [0.0] * len(self.data)
    def __getitem__(self, idx):
        return self.data[idx]

6训练

首先,我们定义一个函数来训练一个迭代周期。updater是更新模型参数的常用函数,它接受批量大小作为参数。它可以是d2l.sgd函数,也可以是框架的内置优化函数。

def train_epoch_ch3(net, train_iter, loss, updater): #@save
    """训练模型一个迭代周期(定义见第3章)"""
    # 将模型设置为训练模式
    if isinstance(net, torch.nn.Module):
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()
            l.mean().backward()
            updater.step()
        else:
            # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]

在展示训练函数的实现之前,我们定义一个在动画中绘制数据的实用程序类Animator,它能够简化本书其余部分的代码。

   class Animator:  
        """For plotting data in animation."""
        def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                     ylim=None, xscale='linear', yscale='linear',
                     fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                     figsize=(3.5, 2.5)):
            # Incrementally plot multiple lines
            if legend is None:
                legend = []
            d2l.use_svg_display()
            self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
            if nrows * ncols == 1:
                self.axes = [self.axes, ]
            # Use a lambda function to capture arguments
            self.config_axes = lambda: d2l.set_axes(
                self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
            self.X, self.Y, self.fmts = None, None, fmts
        def add(self, x, y):
            # Add multiple data points into the figure
            if not hasattr(y, "__len__"):
                y = [y]
            n = len(y)
            if not hasattr(x, "__len__"):
                x = [x] * n
            if not self.X:
                self.X = [[] for _ in range(n)]
            if not self.Y:
                self.Y = [[] for _ in range(n)]
            for i, (a, b) in enumerate(zip(x, y)):
                if a is not None and b is not None:
                    self.X[i].append(a)
                    self.Y[i].append(b)
            self.axes[0].cla()
            for x, y, fmt in zip(self.X, self.Y, self.fmts):
                self.axes[0].plot(x, y, fmt)
            self.config_axes()
            display.display(self.fig)
            display.clear_output(wait=True)

接下来我们实现一个训练函数,它会在train_iter访问到的训练数据集上训练一个模型net。该训练函数将 会运行多个迭代周期(由num_epochs指定)。在每个迭代周期结束时,利用test_iter访问到的测试数据集对 模型进行评估。我们将利用Animator类来可视化训练进度。

def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save
    """Train a model (defined in Chapter 3)."""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc

使用小批量随机梯度下降来优化模型的损失函数,设置学习 率为0.1。

    lr = 0.1
    def updater(batch_size):
        return d2l.sgd([W, b], lr, batch_size)

训练模型10个迭代周期,观察结果

    num_epochs = 10
    train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

在这里插入图片描述

7预测

现在训练已经完成,我们的模型已经准备好对图像进行分类预测。

def predict_ch3(net, test_iter, n=6):  #@save
    """Predict labels (defined in Chapter 3)."""
    for X, y in test_iter:
        break
    trues = d2l.get_fashion_mnist_labels(y)
    preds = d2l.get_fashion_mnist_labels(d2l.argmax(net(X), axis=1))
    titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
    d2l.show_images(d2l.reshape(X[0:n], (n, 28, 28)), 1, n, titles=titles[0:n])
predict_ch3(net, test_iter)

多层感知机

1 隐藏层

线性意味着单调假设:任何特征的增大都会导致模型输出的增大(如果对应的权重为正),或者导致模型输出的减小(如果对应的权重为负)。我们的数据可能会有一种表示,这 种表示会考虑到我们在特征之间的相关交互作用。在此表示的基础上建立一个线性模型可能会是合适的,但我们不知道如何手动计算这么一种表示。对于深度神经网络,我们使用观测数据来联合学习隐藏层表示和应用于该表示的线性预测器。

我们可以通过在网络中加入一个或多个隐藏层来克服线性模型的限制,使其能处理更普遍的函数关系类型。 要做到这一点,最简单的方法是将许多全连接层堆叠在一起。每一层都输出到上面的层,直到生成最后的输 出。我们可以把前L−1层看作表示,把最后一层看作线性预测器。这种架构通常称为多层感知机(multilayer perceptron),通常缩写为MLP。

在这里插入图片描述

这个多层感知机有4个输入,3个输出,其隐藏层包含5个隐藏单元。输入层不涉及任何计算,因此使用此网络产生输出只需要实现隐藏层和输出层的计算。因此,这个多层感知机中的层数为2。

注意,这两个层都是全连接的。每个输入都会影响隐藏层中的每个神经元,而隐藏层中的每个神经元又会影响输出层中的每个神经元。但是,具有全连接层的多层感知机的参数开销可能会高得令人望而却步。即使在不改变输入或输出大小的情况下,可能在参数节约和模型有效性之间进行权衡。

在仿射变换之后对每个隐藏单元应用非线性的激活函数(activation function)σ。激活函数的输出(例如,σ(·))被称为活性值(activations)。一般来说,有了激活函数,就不可能再将我们的多层感知机退化成线性模型:

H = σ ( X W ( 1 ) + b ( 1 ) ) , O = X W ( 2 ) + b ( 2 ) . H = σ(XW^{(1)} + b ^{(1)}), O = XW^{(2)} + b ^{(2)} . H=σ(XW(1)+b(1)),O=XW(2)+b(2).

由于X中的每一行对应于小批量中的一个样本,出于记号习惯的考量,我们定义非线性函数σ也以按行的方式作用于其输入,即一次计算一个样本。应用于隐藏层的激活函数通常不仅按行操作,也按元素操作。这意味着在计算每一层的线性部分之 后,我们可以计算每个活性值,而不需要查看其他隐藏单元所取的值。对于大多数激活函数都是这样。为了构建更通用的多层感知机,我们可以继续堆叠这样的隐藏层,例如 H ( 1 ) = σ ( X W ( 1 ) + b ( 1 ) ) 和 H ( 2 ) = σ ( X W ( 2 ) + b ( 2 ) ) H^{(1)} = σ(XW^{(1)} + b ^{(1)})和H(2) = σ(XW^{(2)} + b ^{(2)}) H(1)=σ(XW(1)+b(1))H(2)=σ(XW(2)+b(2)),一层叠一层,从而产生更有表达能力的模型。

2激活函数

激活函数(activation function)通过计算加权和并加上偏置来确定神经元是否应该被激活,它们将输入信号 转换为输出的可微运算。大多数激活函数都是非线性的。

ReLU函数

最受欢迎的激活函数是修正线性单元(Rectified linear unit,ReLU),因为它实现简单,同时在各种预测任务中表现良好。ReLU提供了一种非常简单的非线性变换。

给定元素x,ReLU函数被定义为该元素与0的最大值:

R e L U ( x ) = m a x ( x , 0 ) ReLU(x) = max(x, 0) ReLU(x)=max(x,0)

ReLU函数通过将相应的活性值设为0,仅保留正元素并丢弃所有负元素。以下是ReLU的图像

在这里插入图片描述
当输入为负时,ReLU函数的导数为0,而当输入为正时,ReLU函数的导数为1。注意,当输入值精确等于0时, ReLU函数不可导。在此时,使用ReLU的原因是,它求导表现得特别好:要么让参数消失,要么让参数通过。这使得优化表现得更好,并且ReLU减轻了困扰以往神经网络的梯度消失问题

sigmoid函数

对于一个定义域在R中的输入,sigmoid函数将输入变换为区间(0, 1)上的输出。因此,sigmoid通常称为挤压函数(squashing function):它将范围(‐inf, inf)中的任意输入压缩到区间(0, 1)中的某个值:

s i g m o i d ( x ) = 1 1 + e x p ( − x ) sigmoid(x) =\frac{1}{1 + exp(−x)} sigmoid(x)=1+exp(x)1

当我们想要将输出视作二元分类问题的概率时,sigmoid仍然被广泛用作输出单元上的激活函 数(sigmoid可以视为softmax的特例)。然而,sigmoid在隐藏层中已经较少使用,它在大部分时候被更简单、 更容易训练的ReLU所取代。

下面,我们绘制sigmoid函数。注意,当输入接近0时,sigmoid函数接近线性变换。
在这里插入图片描述

tanh函数

与sigmoid函数类似,tanh(双曲正切)函数也能将其输入压缩转换到区间(‐1, 1)上。tanh函数的公式如下:

t a n h ( x ) = 1 − e x p ( − 2 x ) 1 + e x p ( − 2 x ) tanh(x) = \frac{1 − exp(−2x)}{1 + exp(−2x)} tanh(x)=1+exp(2x)1exp(2x)

下面我们绘制tanh函数。注意,当输入在0附近时,tanh函数接近线性变换。函数的形状类似于sigmoid函数, 不同的是tanh函数关于坐标系原点中心对称。在这里插入图片描述

多层感知机的从零开始实现

导入相关的包,并将继续使用Fashion‐MNIST图像分类数据集

import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

初始化模型参数

我们可以将每个图像视为具有784个输入特征和10个类的简单分类数据集。首先,我 们将实现一个具有单隐藏层的多层感知机,它包含256个隐藏单元。注意,我们可以将这两个变量都视为超参 数。

我们用几个张量来表示我们的参数。注意,对于每一层我们都要记录一个权重矩阵和一个偏置向量。跟以前 一样,我们要为损失关于这些参数的梯度分配内存。

num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = nn.Parameter(torch.randn(num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))
params = [W1, b1, W2, b2]

激活函数

为了确保我们对模型的细节了如指掌,我们将实现ReLU激活函数,而不是直接调用内置的relu函数。

def relu(X):
    a = torch.zeros_like(X)
    return torch.max(X, a)

模型

因为我们忽略了空间结构,所以我们使用reshape将每个二维图像转换为一个长度为num_inputs的向量。

def net(X):
    X = X.reshape((-1, num_inputs))
    H = relu(X@W1 + b1) # 这里“@”代表矩阵乘法
    return (H@W2 + b2)

损失函数和训练

在这里我们直接使用高级API中的内置函数来计 算softmax和交叉熵损失。幸运的是,多层感知机的训练过程与softmax回归的训练过程完全相同。可以直接调用d2l包的train_ch3函数,将迭代周期数设置为10,并将学习率设置为0.1

  if __name__ == '__main__':
        loss = nn.CrossEntropyLoss(reduction='none')
        num_epochs, lr = 10, 0.1
        updater = torch.optim.SGD(params, lr=lr)
        d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)

最后的结果如下
在这里插入图片描述

  • 22
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值