动手深度学习_Day02

4.线性回归的从零开始实现

1.生成数据集

为了简单起见,我们将根据带有噪声的线性模型构造一个人造数据集。我们的任务是使用这个有限样本的数据集来恢复这个模型的参数。

我们使用线性模型参数

w = [ 2 , − 3.4 ] ⊤ 、 b = 4.2 w = [2, −3.4]^⊤、b = 4.2 w=[2,3.4]b=4.2

和噪声项ϵ生成数据集及其标签:

y = X w + b + ϵ y = Xw + b + ϵ y=Xw+b+ϵ

ϵ可以视为模型预测和标签时的潜在观测误差。在这里我们认为标准假设成立,即ϵ服从均值为0的正态分布。 为了简化问题,我们将标准差设0.01。

 import random
    import torch
    from d2l import torch as d2l
    def synthetic_data(w, b, num_examples): #@save
        """生成y=Xw+b+噪声"""
        X = torch.normal(0, 1, (num_examples, len(w)))
        y = torch.matmul(X, w) + b
        y += torch.normal(0, 0.01, y.shape)
        return X, y.reshape((-1, 1))
    true_w = torch.tensor([2, -3.4])
    true_b = 4.2
    # features中的每一行都包含一个二维数据样本,labels中的每一行都包含一维标签值(一个标量)。
    features, labels = synthetic_data(true_w, true_b, 1000)
    print('features:', features[0],'\nlabel:', labels[0])
    """
    打印出的结果
    features: tensor([0.1541, 0.9738]) 
    label: tensor([1.1969])
    """
    # 通过生成第二个特征features[:, 1]和labels的散点图,可以直观观察到两者之间的线性关系
    d2l.set_figsize()
    d2l.plt.scatter(features[:, (1)].detach().numpy(), labels.detach().numpy(), 1);

2.读取数据集

训练模型时要对数据集进行遍历,每次抽取一小批量样本,并使用它们来更新我们的模型。所以有必要定义一个函数,该函数能打乱数据集中的样本并以小批量 方式获取数据。

 # 函数接收批量大小、特征矩阵和标签向量作为输入,生成大小为batch_size的小批量。每个小批量包含一组特征和标签。
    def data_iter(batch_size, features, labels):
        num_examples = len(features)
        indices = list(range(num_examples))
        # 这些样本是随机读取的,没有特定的顺序
        random.shuffle(indices)
        for i in range(0, num_examples, batch_size):
            batch_indices = torch.tensor(
                indices[i: min(i + batch_size, num_examples)])
            yield features[batch_indices], labels[batch_indices]
    """
        读取第一个小批量数据样本并打印。每个批量的特征维度显示批量大小和输
        入特征数。同样的,批量的标签形状与batch_size相等。
    """
    batch_size = 10
    for X, y in data_iter(batch_size, features, labels):
        print(X, '\n', y)
        break

3.初始化模型参数

在我们开始用小批量随机梯度下降优化我们的模型参数之前,我们需要先有一些参数。在下面的代码中,我们通过从均值为0、标准差为0.01的正态分布中采样随机数来初始化权重,并将偏置初始化为0。

w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)

在初始化参数之后,我们的任务是更新这些参数,直到这些参数足够拟合我们的数据。

4.定义模型和损失函数

定义模型,将模型的输入和参数同模型的输出关联起来。要计算线性模型的输出,我们只需计算输入特征X和模型权重w的矩阵,向量乘法后加上偏置b

# 定义模型
def linreg(X, w, b): #@save
    """线性回归模型"""
    return torch.matmul(X, w) + b

因为需要计算损失函数的梯度,所以我们应该先定义损失函数。这里我们使用平方损失函数。 在实现中,我们需要将真实值y的形状转换为和预测值y_hat的形状相同。

   # 定义损失函数
    def squared_loss(y_hat, y): #@save
        """均方损失"""
        return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

5.定义优化算法

小批量随机梯度下降。 在每一步中,使用从数据集中随机抽取的一个小批量,然后根据参数计算损失的梯度。接下来,朝着减少损失 的方向更新我们的参数。下面的函数实现小批量随机梯度下降更新。该函数接受模型参数集合、学习速率和 批量大小作为输入。每一步更新的大小由学习速率lr决定。因为我们计算的损失是一个批量样本的总和,所以我们用批量大小(batch_size)来规范化步长,这样步长大小就不会取决于我们对批量大小的选择。

 # 定义优化算法
    def sgd(params, lr, batch_size): #@save
        """小批量随机梯度下降"""
        with torch.no_grad():
            for param in params:
                param -= lr * param.grad / batch_size
                param.grad.zero_()

6.训练

现在我们已经准备好了模型训练所有需要的要素,可以实现主要的训练过程部分了。在每次迭代中,我们读取一小批量训练样本, 并通过我们的模型来获得一组预测。计算完损失后,我们开始反向传播,存储每个参数的梯度。最后,我们 调用优化算法sgd来更新模型参数。

 """
    在每个迭代周期(epoch)中,我们使用data_iter函数遍历整个数据集,并将训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。这里的迭代周期个数num_epochs和学习率lr都是超参数,分别设为3和0.03。设置超参数很棘手,需要通过反复试验进行调整。
    """
    lr = 0.03 # 学习率
    num_epochs = 3 # 迭代次数
    net = linreg   # 网络
    loss = squared_loss # 损失函数
    for epoch in range(num_epochs):
        for X,Y in data_iter(batch_size,features,labels):
            l = loss(net(X,w,b),y)# X和y的小批量损失
            # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
            # 并以此计算关于[w,b]的梯度
            l.sum().backward()
            sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数
        with torch.no_grad():
            train_l = loss(net(features, w, b), labels)
            print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

5.线性回归的简洁实现

1.生成数据集

 import numpy as np
    import torch
    from torch.utils import data
    # from d2l import torch as d2l
    true_w = torch.tensor([2, -3.4])
    true_b = 4.2
    features, labels = d2l.synthetic_data(true_w, true_b, 1000)

2.读取数据集

 # 我们将features和labels作为API的参数传递,并通过数据迭代器指定batch_size。此外,布尔值is_train表示是否希望数据迭代器对象在每个迭代周期内打乱数据。
    def load_array(data_arrays, batch_size, is_train=True): #@save
        """构造一个PyTorch数据迭代器"""
        dataset = data.TensorDataset(*data_arrays)
        return data.DataLoader(dataset, batch_size, shuffle=is_train)
    batch_size = 10
    data_iter = load_array((features, labels), batch_size)
    # 这里我们使用iter构造Python迭代器,并使用next从迭代器中获取第一项。
    next(iter(data_iter))

3.定义模型和初始化模型参数

深度学习框架通常有预定义的方法来初始化参数。在这里,我们指定每个权重参数应该从均值为0、标准差为0.01的正态分布中随机采 样,偏置参数将初始化为零。

# nn是神经网络的缩写
from torch import nn
net = nn.Sequential(nn.Linear(2, 1))
"""
我们能直接访问参数以设定它们的初始值。我
们通过net[0]选择网络中的第一个图层,然后使用weight.data和bias.data方法访问参数。我们还可以使用
替换方法normal_和fill_来重写参数值。
"""
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)

4.损失函数

 # 计算均方误差使用的是MSELoss类,也称为平方L2范数。默认情况下,它返回所有样本损失的平均值。
    loss = nn.MSELoss()

5.定义优化算法

小批量随机梯度下降算法是一种优化神经网络的标准工具,PyTorch在optim模块中实现了该算法的许多变 种。当我们实例化一个SGD实例时,我们要指定优化的参数(可通过net.parameters()从我们的模型中获得) 以及优化算法所需的超参数字典。小批量随机梯度下降只需要设置lr值,这里设置为0.03。

   trainer = torch.optim.SGD(net.parameters(), lr=0.03)

6.训练

在每个迭代周期里,我们将完整遍历一次数据集(train_data),不停地从中获取一个小批量的输入和相应的标签。对于每一个小批量,我们会进行以下步骤:

  • 通过调用net(X)生成预测并计算损失(前向传播)。
  • 通过进行反向传播来计算梯度。
  • 通过调用优化器来更新模型参数。

为了更好的衡量训练效果,我们计算每个迭代周期后的损失,并打印它来监控训练过程。

num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
        l = loss(net(X) ,y)
        trainer.zero_grad()
        l.backward()
        trainer.step()
    l = loss(net(features), labels)
    print(f'epoch {epoch + 1}, loss {l:f}')
  • 18
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值