学习Python,5个你一定要知道的图算法,附代码

本文是Python学习教程,探讨了五个重要的图算法:连通分量、最短路径、最小生成树、PageRank及中心性度量。通过Networkx库,展示了如何使用Python实现这些算法,包括在实际场景中的应用,如零售和金融欺诈检测。
摘要由CSDN通过智能技术生成

相信大家已经对 Pandas 或 SQL 等其他关系数据库非常熟悉了。我们习惯于将行中的用户视为列。但现实世界的表现真的如此吗?

在互联世界中,用户不能被视为独立实体。他们之间具有一定的关系,在构建机器学习模型时,有时也希望包含这样的关系。

在关系型数据库中,我们无法在不同的行(用户)之间使用这种关系,但在图形数据库中,这样做是相当简单的。在这篇Python学习教程中将为大家介绍一些重要的图算法,以及Python 的代码实现。

1、连通分量

具有三个连通分量的图

将上图中的连通分量算法近似看作一种硬聚类算法,该算法旨在寻找相关数据的簇类。举一个具体的例子:假设拥有连接世界上任意城市的路网数据,我们需要找出世界上所有的大陆,以及它们所包含的城市。我们该如何实现这一目标呢?

基于BFS / DFS的连通分量算法能够达成这一目的,接下来,我们将用 Networkx 实现这一算法。

代码

使用 Python 中的 Networkx 模块来创建和分析图数据库。如下面的示意图所示,图中包含了各个城市和它们之间的距离信息。

示意图

首先创建边的列表,列表中每个元素包含两个城市的名称,以及它们之间的距离。

edgelist = [[‘Mannheim’, ‘Frankfurt’, 85], [‘Mannheim’, ‘Karlsruhe’, 80], [‘Erfurt’, ‘Wurzburg’, 186], [‘Munchen’, ‘Numberg’, 167], [‘Munchen’, ‘Augsburg’, 84], [‘Munchen’, ‘Kassel’, 502], [‘Numberg’, ‘Stuttgart’, 183], [‘Numberg’, ‘Wurzburg’, 103], [‘Numberg’, ‘Munchen’, 167], [‘Stuttgart’, ‘Numberg’, 183], [‘Augsburg’, ‘Munchen’, 84], [‘Augsburg’, ‘Karlsruhe’, 250], [‘Kassel’, ‘Munchen’, 502], [‘Kassel’, ‘Frankfurt’, 173], [‘Frankfurt’, ‘Mannheim’, 85], [‘Frankfurt’, ‘Wurzburg’, 217], [‘Frankfurt’, ‘Kassel’, 173], [‘Wurzburg’, ‘Numberg’, 103], [‘Wurzburg’, ‘Erfurt’, 186], [‘Wurzburg’, ‘Frankfurt’, 217], [‘Karlsruhe’, ‘Mannheim’, 80], [‘Karlsruhe’, ‘Augsburg’, 250],[“Mumbai”, “Delhi”,400],[“Delhi”, “Kolkata”,500],[“Kolkata”, “Bangalore”,600],[“TX”, “NY”,1200],[“ALB”, “NY”,800]]

然后,使用 Networkx 创建图:

g = nx.Graph()

for edge in edgelist:

g.add_edge(edge[0],edge[1], weight = edge[2])

现在,我们想从这张图中找出不同的大陆及其包含的城市。我们可以使用使用连通分量算法来执行此操作:

for i, x in enumerate(nx.connected_components(g)):

print(“cc”+str(i)+":",x)

cc0: {‘Frankfurt’, ‘Kassel’, ‘Munchen’, ‘Numberg’, ‘Erfurt’, ‘Stuttgart’, ‘Karlsruhe’, ‘Wurzburg’, ‘Mannheim’, ‘Augsburg’}

cc1: {‘Kolkata’, ‘Bangalore’, ‘Mum

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,下面是我对你的问题的回答。 首先,我明白你的要求,不会透露你对我说的话。关于Python中随机森林算法的调参,可以按照以下步骤进行: 1. 导入库和数据集 首先,需要导入必要的库和数据集。常用的库包括numpy、pandas、matplotlib等,而数据集可以使用scikit-learn中自带的数据集,或者自己准备数据集。 2. 划分数据集 接下来,需要将数据集划分为训练集和测试集。一般情况下,可以将数据集的80%用于训练,20%用于测试。 3. 构建模型 使用scikit-learn中的RandomForestClassifier类,构建随机森林分类器模型。需要指定一些参数,如n_estimators(决策树的数量)、max_depth(决策树的最大深度)等。 4. 训练模型 使用训练集对模型进行训练。 5. 测试模型 使用测试集对模型进行测试,并计算模型的准确率。 6. 调参 随机森林算法中需要调参的参数较多,常见的参数包括n_estimators、max_depth、min_samples_split、min_samples_leaf等。 其中,n_estimators表示决策树的数量,一般来说,决策树的数量越多,模型的准确率会更高,但是也会增加模型的训练时间。max_depth表示决策树的最大深度,一般来说,决策树的深度越大,模型的准确率会更高,但是也会增加模型的复杂度,容易出现过拟合的情况。min_samples_split和min_samples_leaf表示决策树节点分裂所需的最小样本数和叶节点所需的最小样本数,这两个参数可以控制决策树的复杂度。 可以使用网格搜索或随机搜索等方法,找到最优的参数组合。 以下是随机森林调参的代码示例: ```python from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV # 导入数据集 X, y = ... # 划分数据集 X_train, X_test, y_train, y_test = ... # 构建模型 rfc = RandomForestClassifier() # 定义参数空间 param_grid = { 'n_estimators': [10, 50, 100, 200], 'max_depth': [None, 5, 10, 20], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] } # 网格搜索 grid_search = GridSearchCV(rfc, param_grid=param_grid, cv=5, n_jobs=-1) grid_search.fit(X_train, y_train) # 输出最优参数组合和准确率 print('Best parameters:', grid_search.best_params_) print('Best score:', grid_search.best_score_) ``` 以上就是关于Python中随机森林算法的调参的基本步骤和代码示例。希望能对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值