python+tensorflow+cuda三者与其他软件的兼容性很要命,很多时候明明不兼容,命令行不报错,这会耽误我们大量时间来找错误原因。
话不多说:本人目前(2019.10月)亲测兼容的搭配为
Win10+Anaconda3(4.2.0)+python(3.5.2)+
tensorflow-gpu(1.13.1)+cuda(10.0)+cudnn(7.4.1)
完美兼容深度学习可能遇到的绝大部分场景。比如:python3.7不兼容tensorflow(官方下载的Anaconda默认安装py3.7版本),模型移植到手机可能需要用到的Android Studio(不兼容python3.7,貌似tensorflow1.14目前也不兼容),CUDA10只支持tensorflow1.13以上的版本。
注意:
亲测,如果你的NVIDIA CUDA是10.1版本的,仍然可以安装cuda10.0+TF1,它是向下兼容的。
目前TF1-GPU 安装貌似只能先安装CUDA(安装包2个G),并且要配置环境变量,再下载cudnn,并将cudnn中的三个文件拖动到cuda中,比较麻烦。而TF2可以直接用命令 conda install cudatoolkit一次安装好cuda和cudnn。
其他所有操作系统、python、tensorflow、cuda 兼容版本对应关系请查看我的另外一篇博客,有详细介绍———[传送门](https://blog.csdn.net/ITwoniu/article/details/105659466)
安装步骤如下:
1.安装Anaconda:
来到 https://repo.continuum.io/archive/ 网站选好Anaconda3.4.2.0,按照指示一步步安装即可,不明白的可以百度安装教程。安装好之后自动附带安装python3.5.2的,若安装到了Anaconda3的其他版本,且附带安装的python为3.6.此时想将py3.6版本降回到3.5用Anaconda Navigator组件是不可行的,会报错。
重点:安装Anaconda时默认安装位置是C:\Program Files (x86)\Anaconda(有空格,天坑。后期命令行运行时可能因此找不到文件路径)。换一个,直接安装在C:\Anaconda
python降版本貌似只能通过重装Anaconda版本或者conda创建多个python虚拟环境实现多个python版本共存
2.安装tensorflow-gpu
命令行输入
pip install tensorflow-gpu ==1.13.1
会出现下载链接
请不要等着pip下载,速度奇慢无比。我们可以找到上述网址手动下载轮子(.whl)文件,再用下列命令行命令手动安装tensorflow任意版本。
①下载好轮子文件后,命令指向该文件所在目录
如本人的轮子文件下载在C:\tensorflow_download目录
命令行如下输入:
②在该目录下,命令行手动安装tensorflow-gpu,使用如下命令:
pip install tensorflow_gpu-1.13.1-cp35-cp35m-win_amd64.whl(轮子文件名)
tensorflow-gpu安装成功!
3.安装配置CUDA10.0+cudnn7.4.1
https://developer.nvidia.com/cuda-downloads 历史版本栏可下载CUDA10.0
https://developer.nvidia.com/cudnn 网站注册,登陆后可下载cudnn7.4.1
安装教程参照网址https://blog.csdn.net/wgc0802402/article/details/92817938安装CUDA10.0+cudnn7.4部分对应安装----解压cudnn-10.0-windows10-x64-v7.4.2.24.zip,所有文件复制粘贴到NVIDIA GPU Computing Toolkit\CUDA\v10.0下。对应的文件会粘贴到对应位置的,不用一个个挨个去复制粘贴。
注意,在安装CUDA10.0这一步
注意:CUDA+CUDNN安装好之后要将 安装路径 写入计算机的 环境变量
如下:
CUDA_SDK_PATH=C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.0
CUDA_LIB_PATH=%CUDA_PATH%\lib\x64 CUDA_BIN_PATH=%CUDA_PATH%\bin
CUDA_SDK_BIN_PATH=%CUDA_SDK_PATH%\bin\win64
CUDA_SDK_LIB_PATH=%CUDA_SDK_PATH%\common\lib\x64
如果平时不用GPU跑visual studio,一定不要选择visual studio integration这个组件,因为它跟tensorflow不兼容,如果以后要用到这个组件,就百度配置visual studio吧,过程比较繁琐。
4.检查所有组件是否都安装好
①检查显卡是否配置好
命令行输入代码 nvidia-smi,如果出现下列显卡信息,则说明显卡配置成功
或者命令行输入nvcc -V,正确安装会出现下图:
②检查tensoeflow-gpu是否配置好
命令行依次输入下列命令:
或者输入以下代码,验证tensorflow-gpu是否安装好:
python
import tensorflow as tf
tf.__version__
tf.test.is_gpu_available()
至此,所有组件都安装配置好了,可以开始写代码啦~~~