2021-04-28

金融风控训练营task3学习笔记

Task 3 特征工程

一、学习知识点概要

1.学习特征处理方法,有:特征预处理、缺失值、异常值处理、数据分桶

2.学习特征交互、编码、选择的相应方法

二、学习内容

数据EDA部分我们已经对数据的大概和某些特征分布有了了解,数据预处理部分一般我们要处理一些EDA阶段分析出来的问题,这里介绍了数据缺失值的填充,时间格式特征的转化处理,某些对象类别特征的处理。

1)预特征处理

找出数据中对应的对象特征和数值特征

总结:比赛数据相比真实场景的数据相对要“干净”一些,但是还是会有一定的“脏”数据存在,清洗一些异常值往往会获得意想不到的效果。

2)缺失值填充

  • 对于缺失值的填充往往会影响比赛的结果,在比赛中不妨尝试多种填充然后比较结果选择结果最优的一种
  • 把所有缺失值替换为指定的值0

    data_train = data_train.fillna(0)

  • 向用缺失值上面的值替换缺失值

    data_train = data_train.fillna(axis=0,method='ffill')

  • 纵向用缺失值下面的值替换缺失值,且设置最多只填充两个连续的缺失值

    data_train = data_train.fillna(axis=0,method='bfill',limit=2)

3)对象类型变量处理

如:时间格式处理

4)异常值处理

  • 首先,如果这一异常值并不代表一种规律性的,而是极其偶然的现象,或者说你并不想研究这种偶然的现象,这时可以将其删除。
  • 其次,如果异常值存在且代表了一种真实存在的现象,那就不能随便删除。
  • 在现有的欺诈场景中很多时候欺诈数据本身相对于正常数据勒说就是异常的,我们要把这些异常点纳入,重新拟合模型,研究其规律。
  • 能用监督的用监督模型,不能用的还可以考虑用异常检测的算法来做。
  • 注意test的数据不能删。

检测方法一:均方差

在统计学中,如果一个数据分布近似正态,那么大约 68% 的数据值会在均值的一个标准差范围内,大约 95% 会在两个标准差范围内,大约 99.7% 会在三个标准差范围内。

  • 得到特征的异常值后可以进一步分析变量异常值和目标变量的关系

检测方法二:箱型图

箱形图提供了一种只用5个点对数据集做简单总结的方式。这5个点包括中点、Q1、Q3、分部状态的高位和低位

总结一句话:四分位数会将数据分为三个点和四个区间,IQR = Q3 -Q1,下触须=Q1 − 1.5x IQR,上触须=Q3 + 1.5x IQR,在上触须和下触须以外的值即为异常值

 

2.数据分箱

  • 特征分箱的目的:

    • 从模型效果上来看,特征分箱主要是为了降低变量的复杂性,减少变量噪音对模型的影响,提高自变量和因变量的相关度。从而使模型更加稳定。
  • 数据分桶的对象:

    • 将连续变量离散化
    • 将多状态的离散变量合并成少状态
  • 分箱的原因:

    • 数据的特征内的值跨度可能比较大,对有监督和无监督中如k-均值聚类它使用欧氏距离作为相似度函数来测量数据点之间的相似度。都会造成大吃小的影响,其中一种解决方法是对计数值进行区间量化即数据分桶也叫做数据分箱,然后使用量化后的结果。
  • 分箱的优点:

    • 处理缺失值:当数据源可能存在缺失值,此时可以把null单独作为一个分箱。
    • 处理异常值:当数据中存在离群点时,可以把其通过分箱离散化处理,从而提高变量的鲁棒性(抗干扰能力)。例如,age若出现200这种异常值,可分入“age > 60”这个分箱里,排除影响。
    • 业务解释性:我们习惯于线性判断变量的作用,当x越来越大,y就越来越大。但实际x与y之间经常存在着非线性关系,此时可经过WOE变换。
  • 特别要注意一下分箱的基本原则:

    • (1)最小分箱占比不低于5%
    • (2)箱内不能全部是好客户
    • (3)连续箱单调

一共有种分桶方式

1)固定宽度分桶

当数值横跨多个数量级时,最好按照 10 的幂(或任何常数的幂)来进行分组。固定宽度分箱非常容易计算,但如果计数值中有比较大的缺口,就会产生很多没有任何数据的空箱子

2)分位数分箱

3)卡方分箱及其他分箱方法的尝试 

分箱更多内容可看 https://blog.csdn.net/wwqnmdhmp/article/details/108721775 很详细

3.特征交互

交互特征的构造非常简单,使用起来却代价不菲。如果线性模型中包含有交互特征对,那它的训练时间和评分时间就会从 O(n) 增加到 O(n2),其中 n 是单一特征的数量。

举例:

4.特征编码

逻辑回归等模型要单独增加的特征工程

  • 对特征做归一化,去除相关性高的特征
  • 归一化目的是让训练过程更好更快的收敛,避免特征大吃小的问题
  • 去除相关性是增加模型的可解释性,加快预测过程。

5.特征选择

  • 特征选择技术可以精简掉无用的特征,以降低最终模型的复杂性,它的最终目的是得到一个简约模型,在不降低预测准确率或对预测准确率影响不大的情况下提高计算速度。特征选择不是为了减少训练时间(实际上,一些技术会增加总体训练时间),而是为了减少模型评分时间。

特征选择的方法:

  • 1 Filter
    • 方差选择法
    • 相关系数法(pearson 相关系数)
    • 卡方检验
    • 互信息法
  • 2 Wrapper (RFE)
    • 递归特征消除法
  • 3 Embedded
    • 基于惩罚项的特征选择法
    • 基于树模型的特征选择

(Wrapper与Embedded不给予说明详细可看链接)

Filter(基于特征间的关系进行筛选)

方差选择法

  • 方差选择法中,先要计算各个特征的方差,然后根据设定的阈值,选择方差大于阈值的特征
from sklearn.feature_selection import VarianceThreshold
#其中参数threshold为方差的阈值
VarianceThreshold(threshold=3).fit_transform(train,target_train)

相关系数法

  • Pearson 相关系数 皮尔森相关系数是一种最简单的,可以帮助理解特征和响应变量之间关系的方法,该方法衡量的是变量之间的线性相关性。 结果的取值区间为 [-1,1] , -1 表示完全的负相关, +1表示完全的正相关,0 表示没有线性相关。
from sklearn.feature_selection import SelectKBest
from scipy.stats import pearsonr
#选择K个最好的特征,返回选择特征后的数据
#第一个参数为计算评估特征是否好的函数,该函数输入特征矩阵和目标向量,
#输出二元组(评分,P值)的数组,数组第i项为第i个特征的评分和P值。在此定义为计算相关系数
#参数k为选择的特征个数

SelectKBest(k=5).fit_transform(train,target_train)

卡方检验

  • 经典的卡方检验是用于检验自变量对因变量的相关性。 假设自变量有N种取值,因变量有M种取值,考虑自变量等于i且因变量等于j的样本频数的观察值与期望的差距。 其统计量如下: χ2=∑(A−T)2T,其中A为实际值,T为理论值
  • (注:卡方只能运用在正定矩阵上,否则会报错Input X must be non-negative)
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
#参数k为选择的特征个数

SelectKBest(chi2, k=5).fit_transform(train,target_train)

互信息法

  • 经典的互信息也是评价自变量对因变量的相关性的。 在feature_selection库的SelectKBest类结合最大信息系数法可以用于选择特征,相关代码如下:
from sklearn.feature_selection import SelectKBest
from minepy import MINE
#由于MINE的设计不是函数式的,定义mic方法将其为函数式的,
#返回一个二元组,二元组的第2项设置成固定的P值0.5
def mic(x, y):
    m = MINE()
    m.compute_score(x, y)
    return (m.mic(), 0.5)
#参数k为选择的特征个数
SelectKBest(lambda X, Y: array(map(lambda x:mic(x, Y), X.T)).T, k=2).fit_transform(train,target_train)

 

三、学习问题与解答

   箱型图的相关内容和分箱的相关代码

解答:通过自己搜索相关内容,询问小组内部成员得到解答

四、学习思考与总结

   本次的Task学习了特征工程的相关知识,有特征的预处理还有里面相关的缺失值,异常值的相关处理方式,还学习了数据分箱的方式和其优缺点,还有特征交互、编码、选择等相关的知识点内容。希望在未来的学习中可以学得更多,学得更好。

 

 

摘自 https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.20850282.J_3678908510.6.f2984d57BWbJhZ&postId=206633

相关内容:https://blog.csdn.net/wwqnmdhmp/article/details/108721775

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值