题目:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
思路:利用递归思想,首先通过前序遍历找出根节点位置,即前序遍历的首节点即为根节点,再通过该根节点找到中序遍历根节点的位置,定义左子树的前序遍历存储容器,左子树的中序遍历存储容器,右子树的前序遍历的存储容器,右子树的中序遍历的存储容器,然后利用递归,进行后序遍历,先左子树,再右子树,最后根节点,重建该二叉树。
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> vin)
{
int vin_size = vin.size();
if (vin_size == 0)
return NULL;
TreeNode* head = new TreeNode(pre[0]);
vector<int> left_pre, left_vin, right_pre, right_vin;
int gen = 0; //用来记录中序遍历根节点的位置,前序遍历的根节点就是首节点
for (int i = 0; i < vin_size; i++)
{
if (vin[i] == pre[0]) //已经找到中序遍历根节点的位置
{
gen = i;
break;
}
}
for (int i = 0; i < gen; i++)
{
left_pre.push_back(pre[i + 1]);
left_vin.push_back(vin[i]);
}
for (int i = gen + 1; i < vin_size; i++)
{
right_pre.push_back(pre[i]);
right_vin.push_back(vin[i]);
}
head->left = reConstructBinaryTree(left_pre,left_vin);
head->right = reConstructBinaryTree(right_pre,right_vin);
return head;
}
};