位运算-8.5/8.6 寻找奇数出现次数

8.5 寻找奇数出现次数I

题目:

有一个整型数组A,其中只有一个数出现了奇数次,其他的数都出现了偶数次,请打印这个数。要求时间复杂度为O(N),额外空间复杂度为O(1)。

给定整形数组A及它的大小n,请返回题目所求数字。

测试用例:

输入:[1,2,3,2,1], 5

输出:3

思路:

因为偶数个num异或一定得0(如 2^2 = 0 这里用 ^ 代表异或),奇数个num一定得num。所以只需要将A中所有数异或起来即得到答案。因为0^1 = 1, 0^0 = 0,0与任何数异或得到原来的数,此处用0作为返回值的初始值。

代码:

class OddAppearance:
    def findOdd(self, A, n):
        # write code here
        ans = 0
        for num in A:
            ans ^= num

        return ans

8.6 寻找奇数出现次数II

题目:

给定一个整型数组arr,其中有两个数出现了奇数次,其他的数都出现了偶数次,找到这两个数。要求时间复杂度为O(N),额外空间复杂度为O(1)。

给定一个整形数组arr及它的大小n,请返回一个数组,其中两个元素为两个出现了奇数次的元素,请将他们按从小到大排列。

测试用例:

输入:[1,2,4,4,2,1,3,5], 8

输出:[3,5]

思路:

我们可以把这两个数记作a,b。和上题一样,如果我们把arr中所有数进行异或操作,最终得到的结果是a^b。因为a和b是不同的两个数,所以,a^b的二进制必然不是全为0。拿测试用例来说,3 = 0x011, 5 = 0x101,3^5 = 0x110。注意,其中红色的1可以看作是原属于3的,5中这一位上其实是0。如果把所有该位等于1的数异或起来,因为其他所有数都出现了偶数次,必然能得到3,从而也能从3^5中得到5。

这里还有一个技巧:一个数和它的相反数取与值,可以保留最低位的1。还是拿3 =  0x011 举例。须知在计算机中负数以补码形式存在, 而补码其实等于原码各位取反加一,因此一个数的补码,假设第k位是最低位的1,则比k低的位都是0,比k高的都与原码相反。-3 = 0x101,3&-3 = 0x001,恰是最低位的1被保留了下来。

代码:

class OddAppearance:
    def findOdds(self, arr, n):
        # write code here
        ab = 0
        for num in arr:
            ab ^= num
        
        low1 = ab&(-ab)
        a = 0
        for num in arr:
            if num & low1:
                a ^= num

        b = ab^a
        return [min(a, b), max(a, b)]

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值