香农编码的 matlab 实现

close all;clear all;clc;
% 香农编码matlab实现
p = [0.5 0.19 0.19 0.07 0.05] %输入概率
n = length(p);
y = fliplr(sort(p));
D = zeros(n,4);
D(:,1) = y';
for i = 2:n
    D(1,2) = 0;
    D(i,2) = D(i-1,1)+D(i-1,2);
end
for i = 1:n
    D(i,3) = -log2(D(i,1));
    D(i,4) = ceil(D(i,3));
end
D
A = D(:,2)';
B = D(:,4)';
for j=1:n
    C=binary1(A(j),B(j))
end
function [C] = binary1(A,B)
C=zeros(1,B);
temp = A;
for i=1:B
    temp = temp*2;
    if temp >= 1
        temp = temp - 1;
        C(1,i) = 1;
    else
        C(1,i) = 0;
    end
end
end

输出结果:

p =

    0.5000    0.1900    0.1900    0.0700    0.0500


D =

    0.5000         0       1.0000    1.0000
    0.1900    0.5000    2.3959    3.0000
    0.1900    0.6900    2.3959    3.0000
    0.0700    0.8800    3.8365    4.0000
    0.0500    0.9500    4.3219    5.0000


C =

     0


C =

     1     0     0


C =

     1     0     1


C =

     1     1     1     0


C =

     1     1     1     1     0

D中第一列表示输入概率,第二列表示累加概率,第四列表示对应输入概率的编码长度

C中按顺序对应D中相应输入概率的编码结果

### 关于香农编码MATLAB实现 #### MATLAB中的香农编码简介 Matlab 是一种强大的工具,适用于算法开发、数据可视化、数据分析以及数值计算。对于实现香农编码而言,Matlab 提供了一个理想的平台来编写和测试代码[^1]。 #### 示例代码展示 下面是一个具体的实例,展示了如何在 Matlab实现香农编码: ```matlab function [shannonCodes, shannonLengths] = shannonCoding(data) % 计算概率分布 uniqueData = unique(data); probabilities = histcounts(data, [uniqueData; max(uniqueData)+1]) / length(data); % 构建符号表 symbols = arrayfun(@(x) num2str(x), uniqueData, 'UniformOutput', false); % 初始化码字长度和码字列表 codeLengths = zeros(size(probabilities)); codes = cell(1, numel(symbols)); % 对概率降序排列并分配初始区间 [~, idx] = sort(-probabilities); sortedSymbols = symbols(idx); intervals = cumsum([0; -sort(-probabilities)]); % 生成二进制表示形式 for i = 1:numel(sortedSymbols) startInterval = intervals(i); endInterval = intervals(i+1); binaryString = ''; currentIntervalStart = startInterval; while true midPoint = (currentIntervalStart + endInterval)/2; if abs(midPoint - currentIntervalStart) < eps || ... abs(endInterval - midPoint) < eps break; elseif rand() >= probabilities(idx(i)) binaryString = [binaryString,'1']; currentIntervalStart = midPoint; else binaryString = [binaryString,'0']; endInterval = midPoint; end end codes{i} = binaryString; codeLengths(i) = length(binaryString); end % 将结果按照原始顺序返回 [~, invIdx] = sort(idx); shannonCodes = codes(invIdx); shannonLengths = codeLengths(invIdx); end ``` 此函数接受一组输入 `data` 并输出两个变量:`shannonCodes` 和 `shannonLengths`,分别代表各个唯一值对应的香农编码及其位数长度[^3]。 为了验证上述函数的工作情况,可以使用如下脚本来运行该函数并查看其输出结果: ```matlab close all clc data = [99, 2, 3, 2, 1, 3, 2, 1, 3, 2, 3, 1]; % 调用自定义的香农编码函数 [shannonCodes, shannonLengths] = shannonCoding(data); disp('Shannon Codes:'); disp(shannonCodes); disp('Shannon Lengths:'); disp(shannonLengths); ``` 这段代码会读取给定的数据序列,并应用之前定义好的 `shannonCoding()` 函数对其进行处理,最后打印出每种不同元素所对应的最佳前缀码(即香农编码)及相应的比特数目。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值